
Recruiting Fundamentals Training

Software Development Life Cycle
An Overview

IT 4 Recruiters

IT4Recruiters.com Confidential

Revised: Rob Broadhead

No portion of this document may be reproduced, stored in a retrieval system or transmitted in
any form by any means without the prior written approval of IT4Recruiters.com Any such
requests should be sent to:

IT4Recruiters.com
Suite 300 #288
115 Penn Warren Dr.
Brentwood, TN 37027-5054

Contact Name: Rob Broadhead (rob@it4recruiters.com)

In no event shall IT4Recruiters.com be liable to anyone for special, incidental, collateral, or
consequential damages arising out of the use of this information.

Revision: 02 IT4Recruiters.com 2015 All rights reserved.

This document contains IT4Recruiters.com sensitive material. Posting or sharing this material
outside of IT4Recruiters.com should be done only at management discretion.

Printed in the United States

mailto:rob@it4recruiters.com

 Recruiter Fundamentals : Software Development Life Cycle

Overview

SDLC is the acronym for “software development life cycle” or
“systems development life cycle”. SDLC describes how to take a
software product or project from idea to implementation and
beyond. Fundamentally, SDLC is an attempt to make software
product development much like developing a real world, physical
product. The SDLC provides a form of assembly line of steps to go
from idea to deployment, just as an assembly line might be used
to create any widget. Software development is considered by
SDLC advocates to be something that should be a reproducible
process. SDLC is an attempt to define that reproducible process
in a general manner to show how similar software development
projects are to each other.

The discussion of SDLC involves a number of areas where the
opinions of the speaker will bias the presentation and this
document is no different. Typical pros and cons will be highlighted
where useful, but in other cases it will be left as an exercise to the
reader as to what sort of opinions exist about a given facet of
SDLC. When in doubt about how a methodology views the various
SDLC steps review the methodology documentation. There will
often be model approaches and reference projects to show
how the methodology should look when put into action.

There are a number of different approaches to the life cycle, but
all of them include the following steps:

• Gather and analyze requirements
• Design
• Implementation (coding)
• Testing
• Deployment
• Maintenance

The “cycle” part of SDLC comes in as a product is enhanced or
new features are added. At that point, the cycle starts again at the
requirements step. This document will discuss each of these
steps in more detail later in the document. 

SDLC stands for
“Software Development
Life Cycle”

It provides a
methodology for
building software

This applies to all forms
of software
development from web
applications to mission
control systems.

A “cycle” of SDLC
usually directly relates
to a release of a version
of software and
sometimes an SDLC
cycle is run through for
each fix or patch
release as well.

 IT 4 Recruiters | SDLC Page 3

 Recruiter Fundamentals : Software Development Life Cycle

Keywords

Here are some useful definitions to keep in mind while reading this document:

• Agile: An SDLC approach that is characterized by its avoidance of “administrative” tasks
over “actual work”. The approach is summed up at http://agilemanifesto.org and has
spawned a number of offshoots and varied approaches.

• Waterfall: A common and well documented SDLC approach that completes each step in its
entirety before moving to the next one. Hence the term “waterfall.”

• Yada: “Yet another document artifact” this is just a convention used here.

• Methodology: Simply put, methodology is an approach to performing a task. In the SDLC
context a methodology describes how you complete the steps defined by SDLC.

• Weasels: This term comes from Scott Adams the creator of the Dilbert comic strip and
here refers to candidates that try to use certain language or experience to work their way
into a position they are not qualified to fill.

You can find these and more at: http://it4recruiters.com/definitions.php.

 IT 4 Recruiters | SDLC Page 4

http://agilemanifesto.org

 Recruiter Fundamentals : Software Development Life Cycle

SDLC Snapshot

SDLC has been around since the 1960s according to multiple
sources, but it is not possible to pinpoint where SDLC as a whole
started. It is an idea that grew out of some early “best practices”
in software development and at some point the SDLC steps were
put together as a process. It gained a near universal acceptance
in the 1980s and became a facet of most development efforts. As
software development approaches have grown and changed over
the last 35 years, people have tinkered with aspects of the SDLC.
The core steps exist in some form in most of the modern software
development approaches. Each approach, however, has its own
take on SDLC and the differences tend to be either in scope of the
SDLC for each cycle or differences in emphasis on the various
steps.

SDLC grew out of best
practices for
development and
continues to advance
and evolve today.

 IT 4 Recruiters | SDLC Page 5

 Recruiter Fundamentals : Software Development Life Cycle

The image above shows the typical flow for a project. The process
starts at “Gather Requirements” in most projects. The yellow
circles are the steps that prepare for, and define, implementation.
Implementation is often seen as the “meat” of the cycle as this is
where the software is built and the coding tasks get done. The
orange testing circle is a step that sometimes is barely addressed,
and at other times is as big a part of the effort as the
implementation step. Design and testing often overlap with other
steps rather than being done in a silo. Deployment is often the
end goal of the project and the “go live” date is tied to the
completion of deployment. The cycle wraps up at the
maintenance step as the product is either kept up to date in
maintenance mode, or is enhanced and a new cycle is begun.
Sometimes maintenance does not occur at all and the product
goes right into the next iteration.

There is a “religious” aspect to SDLC approaches just as there is
to many other technology facets including languages (Java vs C),
environments (Windows vs Mac vs UNIX), vendors (Google vs
Apple), and anywhere an IT related choice is available. This can
make learning about SDLC (or any other IT topic) difficult, and
even confusing, as it is not always discussed in a purely rational
light. The source sites and documents for the various approaches
do tend to describe a sort of meta-SDLC though and that is where
the SDLC steps in this document come from. There is not
currently a standards body that defines how to approach SDLC in a
general sense, it is left to each approach or implementor. This
means a definition of SDLC for the Waterfall approach may seem
foreign to a definition using the Agile approach. There are a
number of links at the end of this document to help those that
want to go deeper into this topic and learn more about the
approaches in use.

There are a large number of user groups, websites, blogs,
podcasts, etc that discuss SDLC and the various approaches.
These also tend to have a large amount of traffic. A Google search
of an approach and a key word such as “SDLC” and “tenets”,
“overview”, “introduction”, or “certification” will usually provide
enough information to lead you to days of research and reading.
IT4Recruiters also has focused papers on topics such as waterfall,
Agile, and other approaches on the roadmap so check our website
regularly for materials or projected publishing dates.

The key to understanding SDLC, no matter what approach is used,
is to understand the six core SDLC steps. Lets look at each of
those in detail…  

Gather Requirements:
Decide what to build
and what it should do.

Design:
Decide how to build it

Implementation:
Build the system or
application.

Testing:
Verify what was built
matches the
requirements

Deployment:
Deliver the product or
system to the users

Maintenance:
Make adjustments or
minor enhancements
based on feedback
from users and system
monitoring.

There are many sources
for discussion and
learning more about
SDLC on the web

 IT 4 Recruiters | SDLC Page 6

 Recruiter Fundamentals : Software Development Life Cycle

Requirements gathering and documentation is arguably the most
important phase, but also one that is often overlooked or at least
given short shrift. At a high level, requirements gathering involves
discussion with the customer or end user about what the end
product should be. The customer may be a business stakeholder,
a product manager, an advisory board, or any other person or
group that can be considered the subject matter expert for the
product. The most important deliverable of this phase is a
communication (document, presentation, conference call, etc)
from the “customer” to the implementation team. The
communication provides details about what is to be produced so
that the implementation team understands what they need to
create.

The requirements step is often accomplished by documenting the
features and functions that will define the product. The size and
depth of this document varies widely from organization to
organization and from approach to approach. The scope of the
requirements also vary by methodology. There are methodologies
that require all of the product requirements to be “set in stone”
during this step. Some require only enough requirement definition
to get the implementation started and the details will be filled in
later. The remaining methodologies fall somewhere in between
the two extremes. Good requirements are a key ingredient for
good testing and quality analysis, as we will discuss later. A
“correct” solution that has been implemented will fulfill all of the
documented requirements.

IT projects often suffer from “doing anything is better than doing
nothing” and this is why requirements gathering and definition is
such a troublesome step. Experience has shown that it is better to
“measure twice and cut once”, so there is a value in gathering and
defining requirements as well as “testing” them. This should
include a sort of walk-through of the requirements that serves to
test that they are reasonably complete and to avoid areas where
requirements might paint one into a proverbial corner. This
emphasis on requirements is not a majority view as requirements
gathering can be costly and frustrating. Code is valued over
planning and design in many of the companies as it is easier to
measure. There is often little value seen in producing a document
in a software project. The Agile approach is a perfect example of
choosing action over documentation (the agile manifesto labels it
working software over comprehensive documentation) and often
the documentation parts are ignored completely, even though that
is a twisting of what Agile is meant to be. It is worth mentioning
the RAD (Rapid Application Development) approach where  

Some Reasons Why
Projects Fail In The First
Step (Requirements)

1. Failure to properly
gather
requirements

2. Failure to properly
document
requirements

3. Failure to
communicate
requirements

4. Failure to involve
implementation
knowledge

The Results of the
failures:
1. We do not know

what to build
2. We did not tell you

what to build
3. We did not explain

what we want
4. We did not realize

our request was not
feasible

The popular Agile
methodology
emphasizes “working
software over
comprehensive
documentation”

 IT 4 Recruiters | SDLC Page 7

 Recruiter Fundamentals : Software Development Life Cycle

requirements are not provided in a document, but instead are the
application itself or some sort of proof of concept. This approach
gets right into action (coding) and squeezes several of the steps
together almost to the level of being implementation-deployment-
maintenance in a single step.

Requirements gathering is not just about volume or time spent on
the requirements. Many projects that fail before ever really getting
started fall prey to spending too much time and effort on initial
analysis and requirements gathering. This can lead into a trap
known as “Analysis Paralysis” where too much time is spent on
requirements gathering and the requirements step never really
gets completed. The Agile methodology tries to address this
situation by limiting the scope of the step and putting more
emphasis on implementation. There are those in IT that are
experienced and adept at producing requirements. The projects
that succeed always seem to have those skilled resources involved
early on in the cycle.

Design is the step that starts off where requirements gathering
ends and the two steps can easily be blurred. If one considers
requirements to be the end destination for a project, then design
answers the question: “how do we get there?” The design is as
important as the requirements gathering. When the requirements
step is not done right, then the end product may not be useful to
the customer. Bad design can lead to a product not useful to
anyone. Design suffers some of the same lack of “wow factor”
that requirements gathering does, as often the design step
produces yet another document artifact (yada). This can lead to
people thinking that requirements followed by design is just a
“yada yada” before getting to the “real” work of implementation.

Good design is not the same as good implementation. The design
step requires the resource(s) doing the design to understand the
requirements and the business rules behind the requirements.
Designers often grow out of the tech/implementation side and
thus tend to have more advanced tech skills and less advanced
(or sometimes absent) business knowledge. This technical bias
often results in a “slick” technical solution to problems that do not
need to be addressed, and the end customer getting a solution
they did not ask for. Design is as much about filling in the gaps
from the requirements step as it is about putting together a
technical solution that meets the documented requirements. If
you have ever done the exercise where you are asked to write
instructions on how to tie a shoe you can relate to the difference

Some Reasons Why
Projects Fail In The
Second Step (Design)

1. Overly complex
design

2. Design does not
meet requirements

3. Design adds
requirements

4. Failure to
communicate
design

Resulting in:
1. The cost is too

great
2. It does not do what

we asked
3. It is too difficult to

use
4. We were not told

what to build

Requirements can be
seen as an answer to
the question: “where
are we going?” and
design is the answer to:
“how do we get there?”

Good developers are
not always good
designers and vice
versa

 IT 4 Recruiters | SDLC Page 8

 Recruiter Fundamentals : Software Development Life Cycle

between a requirement (the shoe lace should help the shoe fit
snug and the lace not drag in a way that could cause a trip) and
design (put each lace in a hand and …). In a software project a
good design is a blueprint for the implementation. Completion of
the design step often will result in a detailed design document and
also often provides a roadmap or time frame for implementation
milestones. Once requirements and design are done there is
usually enough information available to build out an
implementation project plan and to set target dates.

There are experts at requirements gathering and also design
experts. Design is a critical factor in the longevity and stability of a
software product as it can effect implementation costs,
maintenance costs, deployment, and many key factors in
determining how “usable” a product is. It is a higher level skill
than implementation as it must tie implementation to the
customer needs (requirements) in order to be successful. This
leads to design heavy positions typically requiring a greater
number of years of experience and thus a higher price tag for
resources.

Designers do not have to be the best implementors, but they do
have to be able to communicate with the implementors down to a
very detailed level. The best designers can work with
implementors and verify that the implementors are “doing it right”
by providing guidance, implementation suggestions, and even
code reviews. The less experience designers have in the
implementation approach used, the less effective they will be.

Implementation is often the easiest step to understand. This is
where the product is built. Code is produced, data stores are
created, and all of the pieces are assembled. There are a lot of
discussions/arguments about how much of a project is spent in
implementation. The goal varies by methodology, but it is hard to
find good numbers to determine how much time is spent on the
steps for actual projects. It is not uncommon for implementation
to consume 70+% of the total project time. Further reading on a
particular approach will give an idea of how time should be
apportioned to the steps when using that methodology, but most
projects run based on target dates rather than percentage of time
spent in a particular SDLC step.

The implementation step is one that most often crosses
boundaries with other steps. This goes back the mindset that
producing code is the most valuable result of SDLC. Each

A design for a software
project is also
sometimes referred to
as a blueprint.

High quality design can
increase the cost of
developing a product,
but it will likely lead to
a higher quality and
more stable result.

Designers are not the
same as implementors,
but they should be able
to verify the design is
followed.

Good developers are
not always good
designers and vice
versa

It is not uncommon for
the implementation
portion of a project to
take up 70% or more of
the total time.

 IT 4 Recruiters | SDLC Page 9

 Recruiter Fundamentals : Software Development Life Cycle

methodology has its own recommendations, but typically testing
and deployment are done in close to parallel with implementation.
Design is often done in part or almost entirely hand in hand with
the implementation step (e.g. the aforementioned RAD approach).
This allows design decisions to be proven or tested as they are
made.

Implementation can be more than producing code. There are
some methodologies that include the creation of test scripts,
deployment scripts, the automation of tests and deployment, and
even user documentation as parts of the implementation step as
a whole.

It is worth noting that the implementation phase is often the one
that has the largest number of resources assigned to it.
Requirements gathering and design is often done by a small
percentage of resources when compared to the implementation
team. Requirements and Design for example, may be assigned to
2-3 people even when an implementation team might be 50 or
more people. This equates to resources with implementation
experience being far more prevalent than those that have a depth
of requirements gathering or design experience. Designers will
often be involved in implementation but in a team lead or
management role to help leverage their unique skills.

Testing is arguably the least respected phase of the cycle. Over
the last few decades, software development has progressed to
where testing is seen as a necessary evil, but there are some
companies that give it more respect. Testing is often built into one
of the other steps as well as having its own period of focus in the
process. Test planning is usually done in a way that allows for
testing to be reduced or jettisoned in order to meet project
deadlines. There is often an assumption that this reduction of
testing will not have much impact on quality, however that is rarely
the case. Testing recruitment is its own topic, but it is worthwhile
to discuss some typical testing types and how they fit into SDLC.

• Unit Testing is the lowest level of testing and is intended to verify
that a specific piece of functionality works correctly. An ATM
machine would have unit tests to ensure that accounts are
properly credited/debited, card reading works correctly, deposits
can be read, etc. In a perfect world every minute function in a
product would have validation unit tests that have been passed
so we could be sure at least the most basic functionality pieces
function correctly.

Implementation can
include:
• Writing Code
• Test Script Creation
• Deployment Scripts
• Test Automation
• User Documentation
• Technical Documents

The Implementation
phase often has the
most resources
assigned and thus the
most positions to fill.

Testing has not been
seen as important in the
past, but new standards
and security concerns
have made it a more
common and visible
part of SDLC.

Unit Testing: testing
small blocks of code

 IT 4 Recruiters | SDLC Page 10

 Recruiter Fundamentals : Software Development Life Cycle

• Integration Testing is the next logical step from unit testing. Unit
tests verify building blocks work individually and integration
testing verifies the blocks work together correctly. In the ATM
example an integration test might include a check deposit where
the integration between verifying a check and the amount is
integrated with making the proper credit on the account (and the
account selection functionality).

• Regression Testing is a combination of unit and integration
testing that systematically goes through all of the tests to ensure
any recent changes to the implementation did not “break” the
system. This is a testing type often missing, but highly desired,
as it helps ensure application stability as code is enhanced or
patched. Regression tests can be manual scripts but are often
automated to some extent. It sometimes is called: “complete”
testing.

• Smoke Testing is a form of testing that focuses on the main
functions of the application and touches each of them without
going deep into any of them. This is often done immediately
after a deployment as a form of “sanity check” of the production
system. The testing goal is to catch any immediately visible
issues that arose during deployment or only appear on the
production system(s). This typically includes tasks such as:
logging in, editing user information, clicking through the most
commonly used screens and similar tasks.

• System Testing is sometimes used to describe Integration
testing and might also be called UAT (User Acceptance Testing).
This is testing that is done on the end product’s ability to meet
the requirements from an end user perspective. Functionality of
the system is tested and rather than being a test of the
implementation this is more a test of the requirements and
design.

The test names listed here are not set in stone and do vary from
company to company and project to project. Testing types and
how they fit into quality assurance as a whole will be covered in
more detail in another IT4Recruiters white paper.

Experience has shown that testers and implementors use a
different skill set and they are not interchangeable. Developers
tend to be very bad at testing their own code and few are adept at
testing strategies. Developers can run test scripts, but it is rare for
an implementation resource to be a good test writer.

Integration Testing:
Testing how blocks of
code work together.

Regression Testing:
A repeatable process of
testing where parts or
the whole system can
be “verified”. Often
this is automated

Smoke Testing: A
shortened test form to
cover high visibility
areas quickly.

System Testing: Also
called User Acceptance
Testing is used to verify
the end result meets
the requirements.

Test type names vary by
company and vertical.
Clarification of terms is
always helpful.

Implementors and/or
developers should not
be used as testers!

 IT 4 Recruiters | SDLC Page 11

 Recruiter Fundamentals : Software Development Life Cycle

In general, it is also bad practice to combine test and
implementation roles into a single resource. Multiple people
involved make it more likely logic flaws and incorrect assumptions
are brought out in the testing process.

Deployment is a step that is overlooked at times because it tends
to be the step that requires the shortest time and the least
amount of resources to accomplish. The small time requirement
can make it a task that gets bundled in with another role, such as
an implementor or tester. This is changing as security and stability
are becoming more important to almost every software project.
There is an increase in complexity of deployments as more
deployment targets (mobile, desktop, web) get included in typical
releases.

Deployment is typically a manual process early on in the life of a
development shop, but as the team grows and improves its
deployments it often moves to partial, and then complete,
automation. Due to this advancement in how deployment is
handled the deployment resource often begins as a part time task
assigned to another team member, as noted earlier. As
deployment moves to an automated process there tends to be a
growth in need to a full time deployment resource that is either a
converted team member or an additional resource added to the
team.

Deployment requires a blend of skills that includes the ability to
understand how to “install” an application, system requirements,
testing requirements, how source code is built into the application,
and often include knowledge of system security. Senior
specialists will have enough knowledge about the SDLC
methodology being used to be a gatekeeper for when software is
ready to be deployed. It is not uncommon for deployments in
larger shops to include checking out source code, building/
compiling the source, running a series of automated tests, running
database scripts, and deploying to multiple targets.

There is a form of development/deployment called continuous
integration (CI) that makes deployment a part of the development
and testing effort. This often results in nightly builds where
developers commit changes for the day and a system based on
the current code base is deployed for testing. A detailed
discussion of CI is outside of the scope of this document, but is
mentioned here as it does require a special kind of deployment
resource to design and build the CI process.. 

Deployment: The step
where the end result is
made available to the
users.

Deployment often starts
out as a manual process
and a part time
resource, but grows to
automation and a full
time job as complexity
and maturity grows.

Deployment specialists
often have a mix of
skills including: coding,
testing, network, and
administration.

Continuous Integration:
Sometimes called CI, is
a process where regular
builds are made
available (often nightly)
and is a deployment
specialization.

 IT 4 Recruiters | SDLC Page 12

 Recruiter Fundamentals : Software Development Life Cycle

Maintenance is also known as “bug fixing” to most people. This
step involves more than fixing bugs, but the only easily seen effect
of a maintenance release tends to be bugs that are fixed rather
than features that may be far more important, even if not easily
seen by users. Unseen improvements often revolve around
performance, stability, and logging system activity.

The amount of time and effort that goes into maintenance of a
product is typically related to the product release cycle and how
well the original release was implemented. The most notable
exception to this is when third party products release an update
that effects the product. This might include browser updates,
operating system updates, and new versions of code libraries. A
company that only does yearly releases is far more likely to have
regular maintenance (also called point) releases than a company
that does monthly releases. In the same way, a company that
tends to release shoddy code on the first attempt will be more
likely to spend time in maintenance releases.

The approach used to put together a maintenance release varies
by methodology used but it typically is a form of shortened SDLC
cycle:

• Requirements gathering is accomplished by gathering a list of
known bug/issues

• Design is a minimal effort as little design is required to
address bugs/issues in most cases

• Implementation is a short cycle due to limited amount of work/
changes to be done

• Testing may be minimal and targeted to the areas impacted.
Regression testing is highly useful for maintenance releases

• Deployment is the same process as used to do a full release in
some cases although it is becoming more popular to do a
“patch” that only changes/updates some of an existing
deployment

Maintenance is often considered a less challenging task than new
development and might be assigned to a smaller/less experienced
team than the original development team. This is also work that
some find to be “beneath” them and that can lead to maintenance
roles being shunned. Unfortunately none of this reduces the
importance of maintenance in software stability.

Maintenance: Best
known as bug fixing or
patching, this is where
simple errors are fixed.

Maintenance often
includes performance
and usability
improvements as well
as fixes.

It is not uncommon for
maintenance releases to
follow a shorter, but full
SDLC life cycle. The
Agile approach has a
concept of “sprints”
which effectively makes
all releases a shortened
SDLC cycle.

Maintenance lacks
glamor as a role, but it
is critical to on-going
success for a software
product.

 IT 4 Recruiters | SDLC Page 13

 Recruiter Fundamentals : Software Development Life Cycle

Adoption

SDLC is here to stay in some form and it is steadily evolving. There
are still startups and first time development attempts that do not
follow some form of SDLC approach, but even that is becoming
less common. Proper understanding of and the ability to adhere
to a SLDC methodology is still an issue for many teams. It is not
uncommon to find a software development team that has taken a
methodology or two and adopted them to the team’s strengths,
weaknesses, goals, and comfort. Design and testing often start
out as less a part of the total effort. As a team or company
matures, implementation shrinks as a percentage of the whole
effort while testing grows to a more important role. This
recognition of the import of design and testing leads to older,
more established companies not only likely to have more ingrained
SDLC processes, they are also more likely to be looking for
resources experienced in a particular methodology.

Strengths, Weaknesses, Progression

SDLC is often a secondary or tertiary trait that will show up on a
list of position requirements. This makes SDLC experience that
matches a hiring company more often a “plus” or “nice to have”,
than a hard requirement. The exceptions to this are: companies
that are trying to improve their adherence to a methodology, that
want experienced resources to lead that effort, and agile projects.
Agile is considered a new approach and is a very different way of
thinking when compared to the older waterfall. Companies often
want resources that have been exposed to agile to avoid
difficulties in integrating a new member into the team due to lack
of understanding of the methodology.

In the early stages a company will be searching for implementation
resources almost exclusively. The design and requirements
gathering will be done by the implementation team or a team lead.
As the company matures there will be design resources added.
Testing is often grown by requests for implementation resources
that have some sort of testing/QA exposure and/or experience
that moves into requests for skilled and experienced quality
resources. These requests often tend to arise after a failed or low
quality deployment. Deployment specialists are added towards
the end of building a “complete” team and often after a few
product releases. It is often the case that a company suffers due

SDLC has been widely
adopted and is steadily
evolving and
advancing. This is an
aspect of IT that is key
to understanding the
ebbs and flows of the
hiring “seasons”.

SDLC experience is a
factor in hiring
decisions and asked
about in interviews far
more often than it
appears on the list of
job requirements.

Companies tend to
start out hiring
implementation
resources and then
move to designers,
analysts and eventually
testers, as they mature
in using SDLC.

 IT 4 Recruiters | SDLC Page 14

 Recruiter Fundamentals : Software Development Life Cycle

to bad testing or a botched deployment and then starts a search
for QA or deployment resources. It can be very valuable to a
relationship with a customer to be ahead of the game and
suggesting resources within the customer’s budget before a QA or
deployment disaster hits.

Market skill set

In general, it is hard to spend any time in software development
and not be exposed to SDLC of some sort. It is a very academic
subject in many ways and taught in most computer science
programs. A number of IT related general studies will touch upon
SDLC at least as an overview. Methodologies are often topics
covered on tech blogs and in tech magazine articles, so exposure
at some level often occurs early in an IT career. Jobs at large
corporations often will include SDLC exposure although that
exposure tends to be focused on a single step and not the full life
cycle.

Experience is the best teacher of SDLC and it requires full life cycle
exposure. This leads to SDLC skills that are requested often
starting with a minimum of 2+ years of experience and “senior”
resources can easily require 15, 20, or more years of experience.
This varies by methodology, as some are very new. For the newer
methodologies, experience in a single project using that
methodology can be considered strong experience. When in
doubt, try to find out how old a methodology is when trying to meet
job requirements, it will help avoid trying to fill a position for
someone with 20 years experience in a five year old technology.

Certifications

SDLC in general does not have a certification although almost
every methodology has some form of certification available. There
are links at the end of this document to help and a Google search
of the methodology and certification is often fruitful with good
matches at the top of the results and the search sponsors/ads
tend to be a good source of further information.

CMM: Capability
Maturity Model is a
measure of the level of
adoption of SDLC
(among other things)
and mention of it on a
job description should
be considered an
indicator that SDLC
experience will be
addressed in screening
and interviews.

SDLC Skills are most
often based on
experience more than
any certifications or
formal education as
that is the best teacher.

There is not a general
SDLC certification, but
you can find them for
specific methods and
Agile in particular.

 IT 4 Recruiters | SDLC Page 15

 Recruiter Fundamentals : Software Development Life Cycle

SDLC Conversations

Early in this document it was pointed out that SDLC tends to be a
secondary requirement at best; however, this does not make it
something that should be ignored when trying to fill a position. It
is important to have an understanding of whether a resource will
need to be able to meld with the team (and their approach) on day
one, or whether a new team member will be able to learn the
methodology on the job. The lack of SDLC appearing on a job
description should not preclude it as part of the discussion about
best fit resources.

Clarifying Questions

Whether you are trying to define a position to be filled or are trying
to find resources that are good candidates to fill a position, there
are a few things that are helpful to know when making that match:

• What methodology, if any, is used?

• How important is SDLC methodology to the role being filled? Is
this a company that sort of uses the chosen methodology or
adheres to it strictly?

• Does the organization have mentors for the methodology? are
they hoping to find mentors?

• Will the candidate need to know the whole SDLC for the
methodology or just some of the steps? Which steps?

• What is the SDLC maturity level of the company? Is this their
first release or have they been following the chosen
methodology for years?

• What is the typical release cycle? Larger projects and longer
release cycles mean longer and more involved SDLC steps. A
resource may be a better fit if they have more experience at the
point of the life cycle where the company is at when the
resource joins the team.

SDLC is important
enough to always make
it a part of what sort of
resources are a best fit
for a position.

SDLC Questions:

• What methodology is
being used?

• How important is
SDLC to the role?

• Are mentors
available?

• Is full SDLC
knowledge needed?

• What is your maturity
level for SDLC?

• What is the typical
release cycle?

• Where are you at in
the release cycle?

 IT 4 Recruiters | SDLC Page 16

 Recruiter Fundamentals : Software Development Life Cycle

Crossover/Complementary Skills

The list of complementary (or replacement) skills for an SDLC
requirement is short due to how general SDLC is as a topic. There
are similarities among the various methodologies, so you can find
candidates that are going to be solid in an agile shop due to their
waterfall experience, for example. This is not always the case, so
the only way to get a good feel for a skill set that is going to be
“close enough” to SDLC requirements for a position is to get to the
root of why any SDLC requirements are listed on the position. The
hiring manager may just want some SDLC experience as a way of
proof that a candidate has been involved in a “real” project
development process, or there may be a specific gap in the
current team knowledge that needs to be filled. As was noted in
the prior section, SDLC should always be discussed, but if it is
already a part of the job requirements that is (obviously) a great
starting point for the discussion.

Weasels

SDLC weasels generally fall into a couple of categories. They
either try to convince the customer that they have full SDLC
experience when they do not, or they try to show experience they
do not have in a specific step or steps. In both cases, weasels
tend to use terms and buzz words they do not understand, but
they count on the listener to be impressed. They think that simply
using the words will show how knowledgeable they are. This
makes it fairly easy to spot the weasels by asking them to explain
the buzzwords they use. A weasel will often avoid specifics in their
explanation/definition (or might be completely wrong) where a
truly experienced candidate will provide a specific definition and
be able to provide examples from their experience.

SDLC is a technical skill set that has produced a lot of candidates
that have less knowledge than they realize about SDLC in general
and methodologies in specific. Agile is the worst case of this as it
is considered a “hot” skill to have, but many candidates that use
Agile miss the point and only have limited experience with the full
methodology. There is a lot of terminology around Agile (scrum,
pair programming, xp, extreme, sprint, etc.) that gets thrown
around without knowledge of what the terms actually mean or
practical experience. As with any methodology, it is best to spend
some time learning the key terms used by the methodology and
what they mean. In particular, what they mean to the hiring

SDLC crossover skills
tend to be from other
methodologies, but still
within the general
sphere of SDLC.

When in doubt:
Ask for further
explanation of terms
and buzzwords. This is
the best way to show
weasels for what they
are.

Agile related terms are
hot topics in the current
market so a general
understanding of these
terms can be highly
valuable in avoiding
weasels.

 IT 4 Recruiters | SDLC Page 17

 Recruiter Fundamentals : Software Development Life Cycle

manager as the manager may have a different understanding from
the “official” definition.

Screening Questions
Here is a sample list of questions to help screen a candidate
based on their SDLC experience. These may come up in
discussions about the job description and/or may be asked in a
typical technical screen/interview:

• What are the components/steps of SDLC? Terminology varies
so you may need to ask for a description of a term to determine
whether the answer is correct.

• What are the outputs of the SDLC steps? This can be modified
to ask about a specific step if knowledge of the whole SDLC is
not required.

• Have you been involved in a project that went through an entire
SDLC cycle?

• What SDLC steps are you most comfortable with and why? This
will help determine the kind of experience the candidate has
and their natural inclinations along with getting a further idea of
their knowledge of the step(s) they choose.

• Is there a particular SDLC methodology you prefer or are most
comfortable with? Why? This is a more advanced question, but
may be very important when specific methodology is required or
preferred.

SDLC is such a common facet of software development that more
questions and ways to test for SDLC knowledge are available.
These questions are a good start though. Rather than look for a
specific answer to these questions, let the candidate talk as that
may provide far more insight into their knowledge and experience.

Good SDLC screening
questions are typically
open ended and
intended to lead to the
candidate giving long
form answers rather
than a simple, or
canned answer.

 IT 4 Recruiters | SDLC Page 18

 Recruiter Fundamentals : Software Development Life Cycle

SDLC Resources

Resources for more information

http://istqbexamcertification.com - Lots of information is available at this site if you want to
dig deeper into this topic and several related topics.

http://www.aspe-sdlc.com is a training and certification site that has a few free resources
and a number of training offerings to learn more about many different SDLC approaches
including the popular Agile and Waterfall approaches.

http://www.pmi.org is the site for the PMP certification which is Waterfall oriented and a
proponent of that approach.

http://www.pmi.org/Certification/New-PMI-Agile-Certification.aspx Is a new certification
pmi.org has added for agile approaches making pmi.org a great place to compare and
contrast waterfall and agile approaches to the SDLC.

Source Materials

http://istqbexamcertification.com - Lots of information is available at this site if you want to
dig deeper into this topic and several related topics.

Salary info for quick reference:
http://www.glassdoor.com/Salaries/business-analyst-salary-SRCH_KO0,16.htm
http://www.payscale.com/research/US/Job=Business_Analyst,_IT/Salary
http://www.payscale.com/research/US/Job=Software_Designer/Salary
http://www.payscale.com/research/US/Job=Software_Developer/Salary
http://www.payscale.com/research/US/Job=Quality_Assurance_Analyst/Salary/4763392b/
Late-Career

 IT 4 Recruiters | SDLC Page 19

http://istqbexamcertification.com
http://www.aspe-sdlc.com
http://www.pmi.org
http://www.pmi.org/Certification/New-PMI-Agile-Certification.aspx
http://pmi.org
http://pmi.org
http://istqbexamcertification.com
http://www.glassdoor.com/Salaries/business-analyst-salary-SRCH_KO0,16.htm
http://www.payscale.com/research/US/Job=Business_Analyst,_IT/Salary
http://www.payscale.com/research/US/Job=Software_Designer/Salary
http://www.payscale.com/research/US/Job=Software_Developer/Salary
http://www.payscale.com/research/US/Job=Quality_Assurance_Analyst/Salary/4763392b/Late-Career

