
Recruiting Fundamentals Training

Development Languages
An Overview

IT 4 Recruiters

IT4Recruiters.com Confidential

Revised: Rob Broadhead

No portion of this document may be reproduced, stored in a retrieval system or transmitted in
any form by any means without the prior written approval of IT4Recruiters.com. Any such
requests should be sent to:

IT4Recruiters.com
Suite 300 #288
115 Penn Warren Dr
Brentwood, TN 37027

Contact Name: Rob Broadhead

In no event shall IT4Recruiters.com be liable to anyone for special, incidental, collateral, or
consequential damages arising out of the use of this information.

Revision: 01 IT4Recruiters.com 2015-2016 All rights reserved.

This document contains IT4Recruiters.com sensitive material. Posting or sharing this material
outside of IT4Recruiters.com should be done only at management discretion.

Printed in the United States

http://IT4Recruiters.com

Recruiter Fundamentals : Development Languages

Overview

Development languages are as old as computers. These languages are the mechanisms
that we use to tell computers what we want them to do. This document is going to provide a
high level view of the types of development languages in use today, some of their history,
and the ways they relate. Once we have this foundation setup we will move into discussions
about how to find and hire talent for developer positions. The history will be focused on the
way languages have evolved and spawned successors so that later discussions on
development language families will be easier to understand.

The details of many of the languages covered here will be addressed in future IT 4 Recruiters
topics, but once you have completed this course you should have an idea of the differences
and similarities (at a high level) among major languages in use today. You should also be
able to apply that knowledge to the hiring process for development resources to make the
process move smoother, faster, and result in the best candidate accepting an offer.

Keywords
Here are some useful definitions to keep in mind while reading this document:

• Object Oriented Programming (OOP): A development approach that codes for “objects.”
This approach creates objects using code and the objects have properties and methods
that are used to develop applications.

• Functional: A development approach that codes for functions. This approach creates tasks
the computer performs based on input and provides defined output (functions).

• Batch: Development languages used for batch processing. The batch approach is very
much like a list of steps that need to be performed. Each step is defined using a batch
language as well as the order in which the steps are to be performed.

• Script: Sometimes considered simpler languages, script languages are ways to
communicate with the operating system or environment and perform related tasks. Script
languages are often used in batch processes and may be seen as batch languages
although scripting can include other approaches to processing.

• Compiled/Compiler: Languages that convert the code into a set of instructions that are
more easily read by the computer. Compilers convert code into a binary form that is
specific to the platform that will execute the code. This often makes for faster processing
and smaller storage space for the end application.

• Interpreter/Interpreted: Considered an opposite of compiled languages, these process the
code as it is being executed. This takes more time than compiled code during execution,

 IT 4 Recruiters | Development Languages Page 3

Recruiter Fundamentals : Development Languages

but does allow code to be generated on the fly and provides more flexibility in how the
application adjusts to the tasks as they are being done.

• Cross Platform: Code that can be written for multiple platforms. It requires a compile step
on each platform, but in theory the code itself does not need to change. This allows (for
example) a C program to be compiled and run on an Apple Mac and then compiled and run
on a Windows XP machine without changing the code.

 IT 4 Recruiters | Development Languages Page 4

Recruiter Fundamentals : Development Languages

Development Languages Snapshot

There are literally dozens, probably hundreds of development
languages in use today. Some are used by millions of developers
for all sorts of tasks, while some are niche languages used by a
few for very specific tasks. There are languages that we hear
about every day such as: Java, C# (c-sharp, not c-hashtag), PHP,
and C++, but these are far from the only ones used daily. There
are also numerous languages that are used to customize and/or
build applications we use every day where the product name is
familiar, but probably not the language such as Apex (salesforce),
VBA (MS office applications), SQL (databases), and Swift (Apple
iOS applications).

Developers might spend their entire career working with one or
two languages, but most will become proficient in closer to a
dozen through the course of their career. It is not uncommon to
find senior developers with experience in twenty or more
languages. This may seem like a mind boggling amount of
information for a developer to have in their head. In reality, it turns
out the similarities in languages make it often easy for developers
to translate experience in one language to another that is similar.
When development languages are seen more as families of, rather
than individual, languages they become much easier to
understand and relate to. All languages have some core concepts
they share and then the families of languages add additional
concepts that are shared by the languages in that family. The
more languages one learns, the more the differences resemble
dialects rather than whole new languages.

Core Development Language Concepts

There are literally
hundreds of
development
languages that you may
come across in the IT
world.

Developers often
specialize on one or a
few languages, but will
often have some
experience with several
languages over the
course of their career.

Once a developer
grasps core concepts it
becomes easier for
them to apply those
concepts in new
languages.

Assignment Set a value to another value. e.g. A = 12

Comparison Compare values. e.g. A < 10

Logic Combine comparisons e.g. A < 10 and B < 5 or C = 2

Grouping
commands

Define a unit of work. e.g. “Make a sandwich” is done
by 1. getting bread, 2. getting meat, 3. getting
condiments, and 4. Put the meat and condiments
between the bread slices.

Relative tasks Perform a task based on an input. e.g. if the dishes
are dirty then run the dish washer

 IT 4 Recruiters | Development Languages Page 5

Recruiter Fundamentals : Development Languages

The families of development languages are similar to how spoken
and written languages have families. Anyone who has spent time
with Spanish, for example, will find Italian very familiar. This
familiarity expands to a number of languages when you consider
the romantic languages: French and Portuguese, among many
others. The latin roots of words in these languages make it easier
to translate a concept into words in a specific language. For
example, the concept of “feeling good” shows across a number of
languages in words with buon, bene, boon, bon and similar
combinations included as part of the word (benefactor, buenos
dios, buona notte, etc). In the world of development languages
this can be seen in the example of the concept of “show
something on the screen”. Almost all languages support this
action and it often is coded with a command to “print” or
“display”. The most common commands in development are very
similar across languages including: if statements (if), value
assignment (=), loop commands (for,while), and “perform a task
based on a value” (case,switch).

Development languages are like most things in IT. Once you
understand the underlying concepts, the implementation is a
matter of semantics. Put simply, once you know what questions to
ask, it is just a matter of knowing how to ask it. We see this in
spoken languages as well. That is why we often learn common
questions like: what is your name?, where is the bathroom?, and
can I please have a beer/wine? very early in foreign language
education. I don’t need to know anything about Chinese on a
whole in order to ask some one how I say “What is your name” in
Mandarin. That is why phrase books are so effective when you
need to communicate in a foreign language. Development
languages use these same core concepts and can allow a
developer to “get around” in code in a language they do not know.

History
Computer languages started as turning things on or off. It was
modeled this as a one (on) or a zero (off). This is known as binary
coding and it still exists today although there is so much
abstraction provided for development that almost no one really
writes code at that level. There are tools for writing code to that
detail. A slight step up is machine language which can move
things around in memory and set and clear values of several
switches at once. Machine language is very specific to the
hardware it is being written for so it is not portable to other types
of hardware. For example, machine language code for an apple

Development
languages have
similarities among them
just as other spoken
and written languages
do. This makes
learning successive
languages easier.

If statements, looping
constructs, value
assignment and logical
constructs are some of
the most core concepts
among development
languages.

The zero and one
representation you
often see showing
computer programming
or processing is a
reference to computers
being a series of
switches turned on or
off.

 IT 4 Recruiters | Development Languages Page 6

Recruiter Fundamentals : Development Languages

iPhone 5 will run on other iPhone 5 devices, but will be different
for other devices including an iPhone 5s or iPhone 4. Luckily, we
no longer need to worry down to this level of detail. There are
compilers and code generators that handle the tedious work.
Although not completely irrelevant, for our purposes machine
language is exactly that: a language only used by machines. Lets
move on to some languages one might run into today.

In the late 1950s the start of modern languages began with the
creation of FORTRAN, COBOL, and LISP. These languages are
referred to as third generation languages to distinguish them from
machine and binary languages. These are the oldest examples of
languages still in regular use today. These languages provided an
easier way to write code by providing a layer above machine
language that was more human readable. A sample is shown
below of FORTRAN code, it has been made more readable over the
years, but, as you can see from the example, it is a long way from
easy to read. LISP and COBOL are typically less readable by non
developers.

Sample Fortran Code:
initialize random numbers
 seed = 35791246
 call srand (seed)
 do j= 1,100
 niter = niter+100
 count =0
 do i=1,niter
 x=rand()
 y=rand()
 z= x*x +y*y
 if (z .le. 1) count =count+1
 end do
 pi(j)= count/niter*4.
 write(*,10) niter,pi(j)
 format('Number of trials is: 'i5,' estimate of pi is:',f8.5)
 end do
 end

What we do see in these first three languages is the start of types
of languages. Put simply, LISP works on lists, FORTRAN is
functional, and COBOL is data oriented. This ability to categorize
languages becomes important as we look at other languages and
draw similarities between them.

In the early nineteen seventies we see the Pascal and C languages
created, with BASIC following not long after. These are also third

There is a lot of detail
that modern languages
hide and we do not
need to know those
details.

It can be argued that
FORTRAN, COBOL,
and/or LISP is the
ancestor of any
language today
although none of these
is commonly used
today.

We see language
specialization start even
in the comparison of
COBOL, FORTRAN,
and LISP.

 IT 4 Recruiters | Development Languages Page 7

Recruiter Fundamentals : Development Languages

generation languages (3GLs) and are aimed at being cross
platform so that it was easier for developers to apply coding skills
and experience across a number of machines. The code written in
these languages is somewhat more human readable than the
earlier 3GL languages. Pascal and C are still in heavy use today
although barely recognizable from the forms they started in.

BASIC has been supplanted by Visual Basic and then Visual
Basic.NET as it evolved into something similar to the popular
languages of the time. Pascal rapidly evolved into Object Pascal
and then into Delphi as object oriented and the fourth generation
languages became popular. There are a number of ways fourth
generation languages have been defined, but the common view is
that a 4GL gets away from manipulating bits and bytes into more
abstract commands, making the code much more human
readable.

Towards the end of the seventies the U.S. department of defense
adopted ADA as a primary programming language for their
projects. ADA is another 3GL that took strengths from a number
of other languages, including C and Pascal, to make it easier to
learn while still being a valuable and versatile language. It is still
in use today, even though other languages have replaced it in
modern projects. When you see ADA, think Department of
Defense and other government entities.

The eighties saw the rise of object oriented programming. C++
and objective C were created to embrace this new way of
developing. Both of these languages were built on top of C and
provided a way to transition C developers to the object oriented
successors. C++ ended up the far more popular language of the
two, but both are still in wide use today.

A challenger in the object oriented world was Smalltalk. It
appeared around 1980 and was the first “pure” object oriented
language and spawned a number of similar languages including
eiffel, but all of these have faded into a form of obscurity. Modern
projects occasionally pop up with a need for these sorts of skills,
but they tend to be more prevalent in European development
shops where adoption was greater. The popularity of Java ended
up causing the demise of Smalltalk as it provided an object
oriented approach with less overhead than Smalltalk and similar
languages. It was also easier to learn for functional developers.
Java had (and has) similarities to C++ which makes it easier to
transition from C/C++ to Java than to Smalltalk.

Pascal and C are later
3GL languages that are
still in use today in
some form or another.

Fourth generation
languages abstract
coding another level
and often provide point
and click methods of
code creation or
development.

When you see ADA
think Department of
Defense. It is still in use
and often with
applications that were
started decades ago.

C++ and objective C
were created to add
object oriented support
to the C language.

Smalltalk is a purely
object oriented
language that fell into
obscurity as Java rose in
popularity.

 IT 4 Recruiters | Development Languages Page 8

Recruiter Fundamentals : Development Languages

As the Eighties progressed, processors and memory became more
powerful while costing less. This made interpreted languages
more popular. Compiled languages such as C and C++ would
translate code into machine language before the application was
run. This makes the application run faster (it did not have to
spend time translating the code), but it is not quite as flexible in
functionality. Compiled code that functions based on aspects of
the data is hard to write. Even in modern times, compiled code is
often used in the most time sensitive programs such as real time
communication and video processing, or environments that are
very space or processor conscious such as small/micro devices.

Interpreted languages perform the translation to machine
language while the application is running, this allows code to be
created as the application is running. This dynamic code aspect
allowed applications to be more flexible and solve new problems.

The early Nineties saw the introduction of the Internet and better
network connection speeds. Development languages embraced
this and tended to have better support for communication, as well
as being more likely to be interpreted. PERL was created in the
late Eighties as a general programming language that was easier
to use than many shell and batch languages, but it is probably
best known as the predecessor to PHP (created around 1995).
The early Nineties also saw Python, C#, Java (and soon after:
javascript), and Ruby created, all of which are sometimes referred
to as web languages due to their impact on the applications of the
world wide web and being more commonly used for web
applications than traditional desktop or server applications.

These languages tend to be much more human readable and saw
a rapid adoption due to the ease of access to training materials as
the Internet grew in popularity. Professional training and
certification options became popular around this time in a way
that was more accessible to the typical developer which also sped
adoption. The tech bubble of the late Nineties saw a large amount
of money going into training and other educational efforts that
helped create a large population of developers educated about a
large number of languages and able to learn new languages
seemingly on a whim. There are arguments about a
corresponding lack of quality in developed applications, but that is
for another training course. When we talk about language families
the web languages all share some traits even though they also
typically share traits with LISP, COBOL, or FORTRAN.

The Eighties saw heavy
use of compiled code
and applications due to
universal constraints on
application memory
and storage space.
Networked applications
were very rare.

We saw a rise in
interpreted languages
and applications in the
Nineties as memory
and storage space
prices dropped while
processing power
increased.

Modern languages that
started in the late
Eighties and beyond
typically are much more
human readable than
earlier languages in an
attempt to ease cost of
entry into development.

 IT 4 Recruiters | Development Languages Page 9

Recruiter Fundamentals : Development Languages

public class SimpleWordCounter {

 public static void main(String[] args) {
 try {
 File f = new File("ciaFactBook2008.txt");
 Scanner sc;
 sc = new Scanner(f);
 // sc.useDelimiter("[^a-zA-Z']+");
 Map<String, Integer> wordCount = new TreeMap<String, Integer>();
 while(sc.hasNext()) {
 String word = sc.next();
 if(!wordCount.containsKey(word))
 wordCount.put(word, 1);
 else
 wordCount.put(word, wordCount.get(word) + 1);
 }
 // show results
 for(String word : wordCount.keySet())
 System.out.println(word + " " + wordCount.get(word));
 System.out.println(wordCount.size());
 }
 catch(IOException e) {
 System.out.println("Unable to read from file.");
 }
 }
}

Shown Above: Sample Java Code

As language bloodlines go, PERL/PHP is more of a functional
language like C and Pascal although it does support OOP. Java
has strong C roots and a C++ influence. Ruby and Python have an
almost LISP like feel although they are strongly object oriented in
nature. C# is possibly closest to a C like language with strong
influence from Java. It is a general purpose language that can be
used to build compiled stand alone applications, client server
applications and even the most complex web service oriented
distributed applications. The only thing that stops Java and C#
from being direct competitors is that java is cross platform while
C# is limited in where it can be run. We will look a little closer at
these bloodlines in the section on cross-over skills.

The Nineties included an attempt at “write once, run anywhere”
that started with Java and is seen in other languages of the time
up to current day. This is one of the strengths of interpreted
languages: code can be written, and then the source can be
copied to another device and runs the same. This is not
something that has been 100% achieved, but it is “close enough.”
There are a number of popular programs today that are not
compiled for every device/system, but are instead written,
packaged, and then able to run on nearly any system. Java is the
most popular language for these applications, but Ruby, PHP and

Although Java is still a
few steps away from
being easy to read for
non developers, the
usage and coding
standards attempt to
make it more human
readable even while
adding new, complex
features.

Microsoft is using
for .NET to be more
cross platform friendly
and has made it more
and more so with each
release.

Write once, Run
anywhere was a Java
catch phrase/slogan
early on and many
languages have
adopted that goal to
varying degrees of
success.

 IT 4 Recruiters | Development Languages Page 10

Recruiter Fundamentals : Development Languages

Python (among others) are also being used for this purpose on
millions of machines.

The twenty-first century has not brought many new languages as
much as it has libraries and extensions of existing languages.
Javascript, in particular, is the code that launched a thousand spin
offs when you look at all of the popular skills today. JQuery, Dojo,
Angular, and many other skills out there are javascript at their
foundation. Java has also seen a number of libraries get treated
as full blown languages in their own right. Hibernate, Spring,
Struts, and numerous other popular libraries have a java core.
There is not a term fifth generation language, but we are
essentially seeing those today as there are languages built on top
of languages and they often provide quick ways to perform tasks
in the core language. It is almost becoming mandatory that
languages include a “new improved” version or add-on released as
we have seen with Ruby (Rails), Python (Django), and PHP (nuke,
Zend, cake, and others). These libraries and frameworks provide
even easier entry into development jobs provided the development
does not need to delve into the underlying language.

As you can see in the code samples provided, the latest languages
and libraries are not as concerned about human readable code.
There is a trend towards code that is easier for a machine to
interpret and smaller code size. Applications are often
downloaded these days and web applications send code across
the network to be run on a browser so the smaller code size
reduces those load times. There is even a process called
minimizing that is becoming popular and it reduces code size,
while making it easier for a machine to read, but at the cost of
human readability. It has been found to be a sort of middle ground
between compiled code and interpreted code.

<script>
$(document).ready(function(){
 $("#btn1").click(function(){
 alert("Text: " + $("#test").text());
 });
 $("#btn2").click(function(){
 alert("HTML: " + $("#test").html());
 });
});
</script>

Shown Above: Sample JQuery Code

In the last ten or so
years languages have
grown through
extensions and new
libraries rather than new
languages.

Common Extensions
and their core tech:
• Rails-Ruby
• Django-Python
• Zend-PHP
• Nuke-PHP
• Cake-PHP
• Spring-Java

Code minimizing is a
process that reduces
white space and shrinks
names where possible
to make a small file size,
but at the cost of
human readability.

 IT 4 Recruiters | Development Languages Page 11

Recruiter Fundamentals : Development Languages

Modern Landscape
When you look at popularity of languages today (2016) Java is the
top language with C and C++ right behind it (IEEE: http://
spectrum.ieee.org/computing/software/the-2015-top-ten-
programming-languages). Python and C# round out the top 5.
The members and order of the top five languages has been pretty
stable for the last several years. These languages generally can
be used anywhere, and for any type of application, which is a
factor in their popularity. The next five in popularity: R, PHP,
Javascript, Ruby, and Matlab are somewhat stable over the last
few years with R being a newcomer and the precise ranking of the
five varying by year. R, Javascript, and Matlab are “niche”
languages and their rankings are impacted by the types of
applications they are best suited for.

As one would expect, the majority of jobs posted will include Java,
C/C#/C++, or Python. The confusing part is that a lot of modern
positions include a desire for skills in other languages as well. The
single language environment is becoming more and more rare as
secondary and scripting languages increase in popularity and are
easier to use. The increased use of contractors and frequency of
acquisitions has also contributed to this IT diversity.

There are libraries and frameworks used by a large number of
developers that require knowledge of one of the top 10 languages,
but the core language may not even appear on the job description.
For example, job positions may be posted that include a desire for
Spring experience, but Java is not mentioned, or .NET and neither
C# nor Visual BASIC are mentioned. This can make it harder to
find candidates with complementary skills particularly when new
or cutting edge libraries/frameworks are being used.

The top five languages
over the last few years:
• Java
• C
• C++
• Python
• C# (C-Sharp)

Positions often require
experience in multiple
languages as IT shops
grow in diversity
through acquisitions,
side projects, and one
off projects that end up
in production.

Be aware of framework
and library experience
that does not mention
the core language.

Test candidates on core
languages skills as well
as framework
knowledge to find
better candidates.

 IT 4 Recruiters | Development Languages Page 12

Common Technology Pairings (language : framework)

C, C++ : STL Java : Struts

C# : NStruts Java : Swing

C# : WCF Java, C# : Hibernate

C#, Visual Basic : .NET PHP : Code Igniter

Java : Google Web Toolkit PHP : Nuke

Java : Grails PHP : Zend

Java : JSF Python : Django

Java : Spring Ruby : Rails

http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages

Recruiter Fundamentals : Development Languages

This rise in frameworks and code generators has not only caused
job listings to often focus only on the framework or code generator
needed, it has also made it more common to find developers that
know the tools, but not the language. We will look into this in
more detail in the sections on development language
conversations and screening questions.

Web developer jobs are arguably the most common types of jobs
posted. Although not always mentioned as such, Javascript and
HTML are default web languages and are used on almost every
web development project. A web developer that does not have
these skills to some extent (at least exposure) is NOT a web
developer.

Language Classifications
There are a number of ways to classify development languages,
but most of these classifications are more focused on the
languages from a technical point of view, rather than similarity for
learning purposes. When screening potential candidates for a
position, it can be more useful to know what sort of languages will
make it easy to learn the position requirements, rather than a
technical overview. This changes the candidate pool to candidates
that are better suited for the position in the long run through
practical experience, rather than one that can match a list of
credentials. With that in mind lets look at a classification of
languages that is focused on ease of transition to new ones so we
can see where complementary skills might help you find a better
candidate than a direct match.

An overall note about transitioning to a new language: Every time a
new language is learned it will be easier to make the transition. A
developer with twenty years of experience in a single language will
probably find it harder to transition to any language than a
developer with five years of experience in three (or more)
languages. This progressive ease of learning a new language is
due to a few reasons. First, as one learns more languages they
will be exposed to more approaches to solving problems. This is
the same concept of someone that only knows how to use a
hammer sees everything as a nail. Second, each additional
language adds another set of commands and formats for doing
typical tasks. This leads to successive languages being more
likely to be familiar in syntax, style, or both. For an example we
can look at spoken and written languages again. As one learns
more languages there is more likelihood that a word in a new
language is similar to, or the same as, that word in a language

We look at language
classifications as a way
to search for candidates
based on general
experience rather than
a specific skill.

Use language
classifications as a way
to increase your
candidate pool,
particularly with hard to
find or niche languages.

The more languages
one knows, the easier it
is to learn another one
and the faster one can
become productive in
that new language.

 IT 4 Recruiters | Development Languages Page 13

Recruiter Fundamentals : Development Languages

that is already known (mama, papa, etc.). Key concepts may
appear again as new languages are learned such as the gender of
words seen in Spanish, French, Italian, etc. or words having
different tenses.

C is one of the most complex and foundational languages in use.
It is sort of unique in the number of concepts developers are
typically exposed to. It is hard to switch to C from other languages,
but it is one that is easily transitioned away from. A sports team
analogy would be to think of most languages as the skills to play a
position or two, while C is closer to the ability to have all of the
skills used in the sport. A C developer can typically become at
least somewhat productive very quickly when moving to another
language. There are very few concepts in other languages that are
not also addressed in C, particularly when you lump C++ in with it.
This is part of why so many computer science programs include C
as one of the first and main languages students will learn while
pursuing their degree. Object Oriented concepts tend to be the
biggest step a C developer needs to make when moving to another
language.

There are a number of languages that can be boiled down to “C
with object oriented added and some of the ‘harder’ parts of C
removed.” All of these languages are fairly easy to learn from C
and also transitioning among them is not too difficult. These
languages include C#, Objective C, C++, and Java. Java and C#
are more networking and Internet “friendly” so they are easy to
transition between. Objective C and C++ are slightly more
complex and thus a little harder to transition between.

In many of these core languages a number of libraries have been
created that are almost identical across these languages making
it even easier to transition. Most of these tools are open source
and we will spend more time reviewing those in the course on
open source.

Scripting languages are not as similar amongst themselves as the
C based languages, but there are a lot of similar concepts that
make transitioning among them fairly easy. These include awk,
sed, Perl, Ruby, windows batch, shell scripts, Ant, Make, Rexx, Tcl,
and many others. It is easy to move to these from almost any
other language, but the move from script languages to others is a
big step and not always successful.

Script languages are often simple enough in complexity and syntax
that anyone can be taught enough to do some amount of scripting,

C is one of the best
languages to have on a
resume because once
one has learned C they
have at least been
exposed to a large
amount of
programming concepts.

The next great concept
to have experience with
on top of C is object
oriented. This
combination allows one
to relate to nearly every
modern language.

Sometimes libraries and
frameworks make a
move to a new
language easier and
more likely to be
successful.

Moving to a scripting
language from the “big
5” is fairly easy, but
moving from scripting
languages is not always
successful due to vast
differences in
complexity.

 IT 4 Recruiters | Development Languages Page 14

Recruiter Fundamentals : Development Languages

but a developer that only knows script languages is arguably not a
developer. They are better classified as an entry level
programmer or coder.

Adoption
We have already looked at popularity of the languages and also
mentioned that modern jobs often involve multiple languages or
frameworks. Some of the pairings that exist are because one
member of the pair requires the other and some are due to the
type of applications to be built.

Javascript and HTML are used throughout the web and show up on
almost every web development position that is beyond junior level.
PHP, Java, .NET (C# and Visual Basic), Python, Ruby, and other
web friendly languages may be used for some of a web
application, but HTML and Javascript often are listed as required
or highly desirable. HTML code can be written by itself, but I can
not think of a situation where Javascript is used and HTML is not.

CSS (Cascading Style Sheets) often will be paired up with HTML
and Javascript on any web development project, but CSS is not
really a language in itself. It is a script for building design
templates for web pages and has mechanics closer to doing
layouts for print media than development languages. Knowledge
of CSS is almost always helpful for web projects, but it often falls
into the graphic or web designer toolbox more than a developer. If
a developer position requires CSS knowledge (particularly if it
requires CSS design experience) it is going to be front-end (user
facing) development. These roles may be better suited for a user
experience specialist even if only as a short term contract to
handle the front end design work.

As pairings go, there are a number of frameworks built on
languages. In these cases, the framework always implies
knowledge of, and experience with, the core language being a nice
to have at least and is most often required. In some lower skilled
roles (mostly entry level), the framework experience alone will be
enough, but at mid level or higher experience levels there will
always be an expectation of experience in the core language as
well. Refer back to the table above for a partial list of pairings
focused on the most common ones seen today.

From the table, there are some areas where clarification will help.
For the Java pairings, core Java is always going to be assumed at a

Web developers will
always at least have
exposure to HTML,
CSS, and javascript
even after only a year or
two of experience.

CSS expertise often is a
mark of a UI designer
over a developer and
similarly jobs that list
CSS as a primary
requirement are much
more likely to be for a
designer than coder.

A framework listing
without its core
knowledge is always an
indicator that
clarification of the role
or position is needed.

 IT 4 Recruiters | Development Languages Page 15

Recruiter Fundamentals : Development Languages

somewhat equivalent level and maybe even slightly greater. For
example, a requirement of five years of Spring experience typically
implies at least five to eight years of java experience. Languages
outside of C, C++, Java, and C# are often viewed only by their
framework since the core language is so rarely used without
including the framework. Examples of this include Ruby-Rails and
Python-Django.

It is important to note also that Microsoft’s development
framework, .NET, is built so that multiple languages can be used
with it. C# and Visual BASIC are the most common languages, but
there are a few others in use today and in the past. .NET implies
one of the implementation languages will be required, and usually
a customer will expect a specific one. For example, a company
may list a need for 10 years of .NET experience, but further
discussion will turn up that they expect the 10 years in C# or
Visual BASIC. This is not always the case, as .NET components
can be written in either language and the customer may have
needs that are language agnostic. They might even desire
candidates to have experience in multiple .NET languages. In a
similar fashion C# and Visual BASIC often are assumed to be used
to create .NET code, but there are environments where the
languages are used and .NET is not needed. Once again, when
there might be doubt: ask or clarify.

There are a number of open source libraries that started in the C
or Java world that have been ported to C# or PHP (or vice versa)
and the names are similar but not identical, presumably to help
avoid confusion. Most C# libraries start with an “n” so NStruts,
NHibernate, Nunit, etc. PHP ports are not always as simple but
they typically start with “p” or “php” e.g. Struts for PHP, phpunit,
etc. Java libraries often contain a “j” e.g. jUnit, log4J, etc.

Another point of confusion can be that there are often code
names for these development languages. Always do a quick
Google search when you come across something new. One set of
code names that are disappearing (but still may show up on
position descriptions) are J2EE, J2SE, and J2ME used for naming
specific Java language sets. J2EE was for web applications, J2SE
was for Java applications in general, and J2ME was for mobile
applications.

Language - framework
pairings often assume a
slightly higher
experience exists in the
core language than the
framework.

C# and Visual BASIC
are potential
implementation
languages when .NET is
mentioned as a
requirement.

College graduates with
a computer science
degree are an area ripe
with “diamonds in the
rough.”

A lot of big and
successful companies
like Google, Microsoft,
and Amazon will find
hires that they can train
up to senior level
developers over time.

 IT 4 Recruiters | Development Languages Page 16

Recruiter Fundamentals : Development Languages

Market skill set
Developers and Programmers often start out focused on a single
language until they reach a mid level, or greater, amount of
experience. They will typically be exposed to, and possibly have
solid experience in, other languages, but they will have a primary
language in which they are most comfortable and capable. As you
move into the senior developer ranks and beyond there may still
be a strength, but often there are close second and third
languages that are used to develop similar applications. For
example, a senior developer in Java might easily have several
years of C# and PHP experience due to the large number of web
applications they have built. This is more prevalent in developers
with a consulting background. Even large companies have code
language shifts over the last decade or two, and long term
employees went through those shifts as well.

Junior developers with a college degree are usually going to have
been exposed to at least three or four languages. They will have
the expected junior level developer knowledge in each of those
languages, but will still tend to have a single language that is their
strongest. This often helps developers with college degrees
advance faster. They already have been exposed to a number of
concepts that make transitioning to other languages (and learning
the latest hot language) much easier when compared to those
with a more narrower knowledge of development.

There are a large numbers of developers available for the most
common languages, but as you go down the popularity list and
into obscure languages it is harder to find resources. When
looking for developers, it is always important to consider
geography. There are major cities, regions, and countries that
have developer numbers skewed towards certain languages. The
salary expectations also shift based on geography so sometimes it
is possible to find a niche developer at a great price. This is more
likely when remote work is allowed, or if a developer is looking for
a move out of an area flooded with talent (allowing them to
become a big fish in a little pond). It may also be near impossible
to bring in talent when there are too many higher paying areas that
have a need for developers experienced in the desired skill set.
Developers tend to flow to the areas where their skills are needed
the most.

Entry level positions almost always can be filled with a strong
candidate simply by looking for recent graduates. Once you get
into higher experience levels it may help to search for candidates
in certain industries. There is a shift in popularity of languages as

Entry level coders
typically have
experience in only one
or two languages, but
veteran developers may
have dozens.

College graduates with
a computer science
degree often advance
faster due to solid
knowledge of CS
theory.

Popular languages have
more developer
available and niche
language requirements
can be very hard to fill.

Supply and Demand of
resources vary by many
factors including
industry and
geography.

 IT 4 Recruiters | Development Languages Page 17

Recruiter Fundamentals : Development Languages

you look at different lines of business, so looking in other
industries may help find a skilled developer that can be trained in
the new (to them) business. You just need to be aware that there
might be a ramp up cost for entering the new industry.

Startups are a great source of developers that are more likely to
have wider development exposure. The lack of resources
available to a typical start-up often push the developers to learn
more skills outside of their primary language including wider
business knowledge. It never hurts to try to raid a failed start-up
for good talent.

A position should
always provide enough
information to make it
clear the type of
position that is to be
filled.

Developers prefer and
specialize in types so a
match to type can be a
deciding factor when an
offer is made.

Some developer types
such as AI and Scientific
are niche applications
and may be harder to
resource.

Startups are often a
source of better than
average talent when
comparing years of
experience.

 IT 4 Recruiters | Development Languages Page 18

Development Position Types

Front End Develops application user interfaces. This includes
creating and coding the parts of an application that the
user interacts with. High end developer positions focused
on front end development may even look for User
Experience skills.

Back End Also referred to as Database developers in some cases,
these developers tend to write code that interacts with
databases and other data storage types.

Middle Tier The middle tier is also referred to as Business Rules or
Business Logic portion of an application and the core
functionality of the application often exists here. This is
where data is manipulated and calculations are made to
provide results to the user.

Data Analysis This is coding that is purely data manipulation and
calculations.

Scientific As it implies, this is coding involves scientific or
engineering calculations. It is a different skill set than
Data Analysis.

AI/Learning
Systems

Artificial intelligence/Expert Systems/Learning Systems
coding that alters how a program runs based on data the
application has “learned”

Mobile
Applications

Small device coding including phones, tablets, watches,
etc

Shrink-Wrap Commercial software development where the application
is sold directly to a customer as part of the business
model.

Internal Coding where the end product is used within the
company. The primary customers for the developed
product are all internal staff of the same employer as the
coders.

Recruiter Fundamentals : Development Languages

Certifications
There are numerous certifications available for almost every
language. The more popular languages will have vendor and third
party certifications available at several levels to help assess skills
from beginner up to veteran. These certifications are great ways
to vouch for for levels of knowledge and usages for a language
and/or framework. For example, Java certifications include
programmer, master, architect, web and other variations.

The number of certifications can be mind boggling, and are hard
to keep up with, so they are not often seen as a specific job
requirement. It is more common to see certifications as a plus or
a “nice to have.” This being the case, presenting a candidate with
any certification often helps open doors and it is worth looking
into the certifications that will most likely apply to positions you
are trying to fill. A hiring manager that knows about relevant
certifications can vet talent faster and use the skills the
certifications test as a source for screening questions. In some
cases it is as simple as starting with a list of skills required for a
certification and then prefixing the skill requirement with “Tell me
what you know about”.

Some certification programs are simple and not much more
involved than paying some money and reading a few articles.
These are not much different from the old “mail order degree”
scams. These are rare. The majority of the “top 5” language
certifications include a reasonable amount of training and/or
education. There is also a non-trivial exam (sometimes multiple
exams) that must be passed to receive the desired certification.

Certifications can be worth more than a degree in some cases,
particularly junior to mid level positions, and should be highlighted
when possible. A manager can help their retention numbers by
finding some training budget dollars to use on certifying
developers once they have been hired. It is a great incentive plan,
and it helps ensure your team is up to date with the latest
technology changes. Certifications have more practical use than
information gathered in conferences and the knowledge is more
likely to be retained due to the testing aspect of a certification.
Some certifications even include implementation requirements (a
project must be built and submitted) and those can greatly boost
your confidence that the certified developer can hit the ground
running.

Certifications are often
nice to have items on a
development job
posting rather than a
firm requirement.

Look at the vendor that
supplies a certification
to ensure the worth of
the certification.

The value of
certifications is such
that you can sometimes
replace traditional
degree requirements
with a few relevant
certifications.

 IT 4 Recruiters | Development Languages Page 19

Recruiter Fundamentals : Development Languages

After all this happy talk about certifications it is important to note
that certifications show a base level of knowledge and should not
be blindly used to replace experience. Certification paths can be
much better at teaching a technology than a more general
computer science degree. In the long run, the developer that
knows programming approaches and theory will usually be able to
outperform one that simply knows a language to a deeper degree.
Consider the short and long term goals for a position when
weighing the value of certifications possessed by a candidate.

Experience should
always trump degrees
and certifications.

 IT 4 Recruiters | Development Languages Page 20

Suggested Developer Certification Sites

Java http://education.oracle.com/pls/web_prod-plq-dad/
ou_product_category.getPillarPage?p_pillar_id=5

C# http://www.newhorizons.com/courses/microsoft/visual-
studio-training.aspx

PHP http://www.w3schools.com/cert/cert_php.asp, http://
www.zend.com/en/services/certification Note: As an open
source technology PHP has several certification options.

C/C++ http://www.tomsitpro.com/articles/programming-
certifications,2-274-6.html

Others http://blog.pluralsight.com/top-7-programming-language-
certifications

http://education.oracle.com/pls/web_prod-plq-dad/ou_product_category.getPillarPage?p_pillar_id=5
http://www.newhorizons.com/courses/microsoft/visual-studio-training.aspx
http://www.w3schools.com/cert/cert_php.asp
http://www.zend.com/en/services/certification

Recruiter Fundamentals : Development Languages

Development Language Conversations

Development languages can be tough to get your arms around
even when we try to keep the scope to an overview. The good
news is that you do not have to get your arms around all the
languages out there (or even the top ten) in order to find the best
developers for the job. We now have enough foundational
knowledge to move forward and look at how to best define
developer positions and to screen candidates.

Clarifying Questions
The obvious questions about development positions start with the
languages to develop in, but that is just scratching the surface.
The type of development is always the best place to start when
clarifying a development position. There are a number of
development types and characteristics of each type. The table
below provides a quick overview of the types and the traits. These
are not hard definitions, nor are they comprehensive, but it should
help provide some clarity into most development positions. Once
you have a language and a type it provides for great questions
including: “How do you see that language as a good or bad fit for
that type of development?” When we look at cross over and
complementary skills the development type is sometimes as
important as the language itself for placing a candidate in the best
job (for both them and the company).

These development types may not mean much to the recruiter or
manager, but they do to the potential employee. Entry level
developers may not know what these development types are, but
as developers gain experience they will be aware of the types of
development positions in the market and tend to gravitate towards
one or more. The skill sets a developer has will also make them a
stronger or weaker match for a position based on its type.

Beyond the position type, the next important facet of a
development position is the environment and expectations. This is
best expressed as a number of questions that the hiring manager
or recruiter should be able to answer for the candidate:

• How big is the team?

• What roles are represented on the team? (QA?, Database
specialist?, configuration management?, tech writer?, etc)

Always clarify the type
of development that is
needed and the role
the position will play.

If you struggle to
determine the
development type, ask
a developer for help.

Development positions
are often highly
impacted by team and
environment so include
those in any job
description.

 IT 4 Recruiters | Development Languages Page 21

Recruiter Fundamentals : Development Languages

• How is the team structured? (Flat?, Single manager?, Manager
plus team leads?, etc)

• What sort of customer involvement is expected?

• Will customer support be required? On call required?

• What are the typical tools used/available?

Note that the typical
problems faced are a
great way to find
complementary skills/
experience for
developers. As more
detail is made available
for a position it will be
easier to find a great fit
for that position.

Some developer types
are more common than
others and that can be
an early indicator to the
difficulty in filling a
position.

Typical Problems Faced Summary

Front End Number of steps (clicks) to perform a task.
Communicating with the user (labels, messages, etc)
Special data type arithmetic (dates, times, financial)
Spacial programming (placing objects graphically)
API Usage

Back End Special data type arithmetic (dates, times, financial),
Performance tuning, API Usage/Creation,
Transactional programming, Code generation/Dynamic
coding, Thread development

Middle Tier Transactional programming
Special data type arithmetic (dates, times, financial)
Set related functions
Complex Problem Solving

Data Analysis/
ETL

Set related functions,Formulaic programming
Thread development

Scientific/
Financial

Set related functions, Formulaic programming, Spacial
programming (placing objects graphically), Complex
Problem Solving

AI/Learning
Systems

Adaptive programming, Code generation/Dynamic,
coding, Thread development, Complex Problem
Solving

Mobile
Applications

API Usage/Creation, Customer Support, Production
Deployments, Hot fixes/Patches, Multi-Platform
support/development, Spacial programming (placing
objects graphically), Thread development, Full SDLC
development

Shrink-Wrap Customer Support, Develop to plan/schedule,User
documentation, API Creation/Usage, Library creation,
Exposure to Project Management, Production
Deployments, Hot fixes/Patches, Multi-Platform
support/development, Full SDLC development

Internal Exposure to Project Management, API Creation/Usage
Customer Support, Develop to plan/schedule, User
documentation, Full SDLC development

 IT 4 Recruiters | Development Languages Page 22

Recruiter Fundamentals : Development Languages

Market conditions will effect how important (or not) these answers
are. When the market is better suited to the developer, all of
these questions will have answers that can be deal breakers for
the candidate. When the market is shifted towards the hiring
company, candidates might not care about any of these traits of
the position. This can be a problem when the market gets better
(and there are other jobs to jump to), so make them part of the
hiring process to improve retention.

The question about tools also extends to frameworks. This is an
area that has become more important to developers in recent
years. It is not uncommon for newer developers (less than 5 years
experience) to require a substantial ramp up time when they are
placed in a position that does not include using the framework
they have spent the most time with. This is less a factor in
candidates that have core language experience, but that core
experience is becoming less common. Many entry level jobs today
start with developers working with a framework to reduce their
ramp-up time. This often has the side effect of it taking more
years of experience for a developer to get the core language
knowledge that used to come early in a development career.

In some cases even framework versions can be a critical part of
the path to productivity. New concepts may be introduced in a
new version and some features may be “deprecated” or removed
from the framework. Candidates may ask about version numbers
or names so be sure to clarify those details up front.

Crossover/Complementary Skills
The first area where you will tend to see common success in
crossover attempts is in the area of frameworks. It is hard to find
data (or even consistent anecdotal evidence) as to whether lateral
cross over (new framework, same language) or vertical cross over
(same framework, new language) has better results. Modern
frameworks are sometimes able to provide such complete
abstraction that developers may not even use the core language
on a regular basis (if at all). In these highly abstract frameworks
the vertical transition may not even appear to be a transition for
the developer and they are fully productive on day one.

Another big source of potential complementary skills for
developers is in the area of problem solving. The developer types
can be used to provide a list of typical problems a developer is
asked to solve (as shown in the table above) and this often

Market conditions can
cause job factors to be
more or less important,
but attention to these
details in all conditions
can contribute to
improved retention
rates.

Modern developers
should be assessed on
frameworks as well as
languages to determine
best fit.

Version numbers of
languages and
frameworks can be
important to matching
the right candidate.

Frameworks can be a
great way to help
developers cross over
from other language
experience.

 IT 4 Recruiters | Development Languages Page 23

Recruiter Fundamentals : Development Languages

provides great opportunities for complementary skill replacement.
On the other hand there are developer types that have few
similarities. For example, front end developers tend to spend a lot
of time solving problems that back end developers do not, and
vice versa. The reason that the developer type is so important to
clarify is that it implies the type of transition (if any) a developer is
likely to be required to make as they move to a new position.

There are complementary skills among languages, but the easiest
way to view those, without going into details about the languages,
is to look at the developer type for the position. Do not worry about
the technical details about the problems to be solved in the table
above. When you see similar problem names you can assume, for
these purposes, that the problem is shared among the developer
types.

The problems developers face are not always going to be part of a
development position so it helps to ask (when screening) if these
sort of problems are familiar to the developer. If the names and/
or description are not familiar to the developer then asking for a
list of typical problems the developer solved in the past will help.
Likewise, clarify in the position posting (or with the hiring
manager) what sort of problems are expected to be solved by the
developer.

Weasels
Development work tends to pay very well and thus attracts its
share of weasels. Luckily, they tend to fall into one of two
categories. The first category are weasels that have been passed
by as technology changed. These weasels used to be real good at
their craft, and still may know some core information, but they
tend to do things because “it has always been done that way.”
These weasels will struggle in environments that need to take
advantage of technological advances. They may have little, or no,
exposure to frameworks, but can be highly skilled in the core
language. They enjoy their job, but may not be as fast as modern
developers that take advantage of the latest tools and
frameworks. These weasels will try to take a development group
backwards instead of forwards. They will not only be
knowledgable about the older, more established parts of
development, they will also push to stick to those methods rather
than adopt current advances. These weasels sometimes look like
innovators, but they are looking backwards instead of forwards.

Although we have
described developer
types in detail the best
use of them are as
generalities. Focus on
similarities in problems
solved.

When screening a
developer it helps to go
into details of problems
solved rather than
staying up at the level
of developer type.

Weasels are either stuck
in the past or trying to
skip ahead to the latest
hot technology with a
good foundation in
development.

 IT 4 Recruiters | Development Languages Page 24

Recruiter Fundamentals : Development Languages

The other weasels are the ones that have done a little
development work (or a little in the given language) and are
looking for a position beyond their skills and experience. They
essentially look for ways to get on a fast track to a new language
at the expense of experience. Sometimes, these weasels simply
lack self awareness. They may have the best of intentions, or they
may just be trying to use techno babble to get a better pay check
(or experience in a “hotter” technology).

The good news is that shining a light on either of these weasel
types just requires asking them to provide recent examples related
to their development skills. The first type of weasel will talk about
older technology and talk down about newer advances or tools.
These weasels may remind you of the middle aged average Joe
that often reminisces about the glory of their youth. They often
will even claim that the old way is the best and that modern tools
are too slow, too clunky, or they lead to inefficient code. They
might have valid points with some of these arguments, but maybe
less efficient code is an ok trade off for a dramatically reduced
development effort. When faced with the facts of a new tool or
framework being more productive for developers, these weasels
may fall back on claiming that the facts may be true for most
developers, but not for them. The “past it” weasels are often in
the position they are due to fear of change, or maybe even simple
laziness about keeping up with technology.

The “stretch” weasels might have some good stories about the
language or framework, but will show themselves to be bit players.
They might be indirectly involved, or might even come up empty,
when asked for concrete examples of more advanced work. They
often will have a heavy reliance on frameworks and code
generators. When tested on core code knowledge, the questions
will be answered poorly or incorrectly. One way that weasels will
move into a new language or framework is to go through a few
tutorials or example projects in the new technology. A direct
question sometimes will reveal this, but it is more reliable to ask
about the development work they have done and drill down into
specific applications or modules they have written. A question
about how they would do that work differently based on what they
learned from the project is always a great way to detect weasels.
Their answers will usually be disjoint or almost dismissive (e.g. I
would do nothing different).

Weasels might provide a great portfolio, but on deeper review the
portfolio will be found to be example apps, a minimal use of a

The best anti-weasel
approach is to ask for
details and examples of
their past work.

Good stories about
past experience may
turn out to be cases
where the weasel was
only a small part of a
large team. Always ask
about a developer’s role
in a team.

 IT 4 Recruiters | Development Languages Page 25

Recruiter Fundamentals : Development Languages

framework, or something else that looks good, but has poor or
broken functionality.

Screening Questions
We discussed weasel filtering questions, and now we can move on
to general questions for screening developers. These questions
will help an interviewer get a feel for the type of developer, specific
experience, and general development knowledge. These
questions will also help provide the interviewer with enough
details to determine whether a candidate is a match for the role
and not just the requirements.

• What languages have you used? Which is your favorite, or the
one you enjoy the most? Note: This is a great way to get them
talking about their experience and a way to find good
development position fits.

• Of the languages you have used, what is your favorite and least
favorite? and why? Note: Another good one to get them talking
and going a little deeper into what their thoughts are on a
language or two. This is a great question for getting a feel for
how the candidate thinks.

• How do you handle code documentation? Note: This can show
experience and attitude. Most experienced developers will
provide in depth answers about either self documenting code,
code generator friendly comments, or other tried and true
methods. Entry and even some mid level developers will provide
short answers along the lines of: they comment code when they
need to (or something quick like that).

• What is your comfort level with version control? How do you
address simultaneous coding? Note: More experienced
developers will be comfortable with version control unless they
have always been a lone coder. Their answer to simultaneous
coding will be biased by the source control tools they have used.
Senior developers will talk about multiple approaches
depending on the tools used for version control and potentially
even branching strategies.

Screening Developers

• Languages used

• Favorite Language

• Developer strengths
and weaknesses

• How do the handle
documentation?

• What is there version
control experience?

• Have they been asked
to tune code?

•
• Object Oriented

Experience?

• Problems they have
been asked to solve

• What is their desired
development type?

• What are their
environment
preferences?

 IT 4 Recruiters | Development Languages Page 26

Recruiter Fundamentals : Development Languages

• Have you had to tune code for size or speed? If so, what was the
goal and what was your solution? Note: Mid and Senior level
developers will almost always have done this somewhere on
their journey. The depth and thought that goes into this answer
will also be a good indicator of the true experience level of the
developer. Junior developers will list a couple of steps, while
experienced developers will provide a lengthy list of tuning steps
and possibly even the reasoning behind the steps. This also
serves as a great question for finding out how strong or weak
the candidate’s communication skills are.

• For object oriented languages: Explain Encapsulation,
Inheritance and Polymorphism, provide examples. Note: This is
for positions that list object oriented programming as a
requirement. If you do not know what these three terms, are a
google search of object oriented and then each of the three
words will provide a simple answer and probably a good
wikipedia page. The answers given by a knowledgable
developer will often be almost verbatim with any definition you
find on the Internet.

• When would you use global variables, if ever? Note: This is a
good question for seeing how they think. This might even cause
the candidate to do some thinking on the fly to consider what a
good answer would be. There is no right answer, but there are
some that are essentially “wrong.” The wrong answers include:
all the time, never, and “what is a global variable?”

• What type of development do you prefer? (see above table for
examples) Note: No right answers on this one, just a way to find
out what they prefer and if they might be a good fit. This is also
a question that might help highlight some complementary and/
or crossover skills.

• What type of team environment do you prefer? Note: Make sure
the answer is a match for the position(s) that are applied for.
Always ask for some examples in their experience just to avoid
weasels.

• Explain applications you have written and the problem(s) they
solved. Note: Another “no wrong answer” question that will help
provide a picture for the type of developer this is and their
experience. Some developers will be fine until they get to the
“problem it solved” part of this question. These are junior
developers no matter what their resume says.

Screening Tip:
We provide a large
number of screening
questions, but these are
not always applicable.
You should be able to
match a screening
question to a job
requirement. If a
screening question
does not match back to
a requirement… don’t
ask it.

 IT 4 Recruiters | Development Languages Page 27

Recruiter Fundamentals : Development Languages

• Explain the value of a debugger and alternative methods when a
debugger is not available. Note: This is a good question for
rating experience and possibly thinking on the fly. The value of
a debugger is going to be along the lines of being able to quickly
look at code that is causing a problem and the state of the
application right before, or when, the bug occurs. Alternative
methods include application logging, console output, and
message boxes or alerts.

• What are some reasons for an application log? Note: Debugging
as mentioned before, but some advanced answers will include
looking for performance degradation, activity peaks and valleys,
and security audits.

In general, it does not hurt to ask a few syntax questions, but the
best insight will come from asking about specific experience and
applications. Use the time spent screening to find out what a
developer has done and how they did it. This will provide a far
better measure of their experience than simply knowing how many
years they spent with a title or working with a particular
technology.

Screening Tip:
Ask about experience
over technical details to
get a better view into
how the developer
works and their likely
ability to adapt to
changes in the future.

 IT 4 Recruiters | Development Languages Page 28

Recruiter Fundamentals : Development Languages

Development Languages Resources

Resources for more information
If you haven’t had your fill, here are some more places to expand your knowledge:

http://www.transcender.com - A great third party source of certifications and training.

Source Materials
https://en.wikipedia.org/wiki/Third-generation_programming_language
https://en.wikipedia.org/wiki/Second-generation_programming_language
https://en.wikipedia.org/wiki/Fourth-generation_programming_language - Wiki pages on the
generations of programming languages.

https://en.wikipedia.org/wiki/Smalltalk - Smalltalk related dates

https://en.wikipedia.org/wiki/Ada_(programming_language) - Ada related dates

https://www.cs.utexas.edu/~scottm/cs307/javacode/codeSamples/
SimpleWordCounter.java - Sample java code
Quick Reference Document Links:

Lamguage/Framework Web Site

Java http://www.oracle.com/technetwork/java/index.html

Struts https://struts.apache.org/

Hibernate http://hibernate.org/

Spring https://spring.io/

C# https://msdn.microsoft.com/en-us/vstudio/hh341490.aspx

Python https://www.python.org/

Django https://www.djangoproject.com/

C/C++ https://isocpp.org/

PHP https://secure.php.net/

Ruby https://www.ruby-lang.org/en/

Visual Basic https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx

Objective C https://developer.apple.com/library/mac/documentation/Cocoa/
Conceptual/ProgrammingWithObjectiveC/Introduction/
Introduction.html

 IT 4 Recruiters | Development Languages Page 29

http://www.transcender.com
https://en.wikipedia.org/wiki/Third-generation_programming_language
https://en.wikipedia.org/wiki/Second-generation_programming_language
https://en.wikipedia.org/wiki/Fourth-generation_programming_language
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://www.cs.utexas.edu/~scottm/cs307/javacode/codeSamples/SimpleWordCounter.java
http://www.oracle.com/technetwork/java/index.html
https://struts.apache.org/
https://www.djangoproject.com/
https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx

Recruiter Fundamentals : Development Languages

Java - http://www.payscale.com/research/US/Job=Java_Developer/Salary
C# - http://www.payscale.com/research/US/Job=C%2523_Developer/Salary
C++ - http://www.payscale.com/research/US/Job=C%2b%2b_Developer/Salary
PHP - http://www.payscale.com/research/US/Job=PHP_Developer/Salary
Ruby - http://www.payscale.com/research/US/Job=Ruby_Software_Developer_
%2f_Programmer/Salary

 IT 4 Recruiters | Development Languages Page 30

http://www.payscale.com/research/US/Job=Java_Developer/Salary
http://www.payscale.com/research/US/Job=C%2523_Developer/Salary
http://www.payscale.com/research/US/Job=C%2b%2b_Developer/Salary
http://www.payscale.com/research/US/Job=PHP_Developer/Salary
http://www.payscale.com/research/US/Job=Ruby_Software_Developer_%2f_Programmer/Salary

