
Creating a Software
Solution

Designing a Database for Maintenance and Scalability

Our Story so Far

• We Found A Problem To Solve

• We Built Requirements and Use Cases

• We Created A Clickable Demo

• We Created a User Experience

Next Step

It is time to start implementing a solution

Sometimes we start from the Front End
sometimes from the Back

In this case, our focus is the data we want to
capture and report on

The Importance of The Data

• This application is all about goal tracking and
reporting

• It is critical to the usefulness of the project to
properly store and retrieve data

• This is a great next step from a first clickable
demo

• Data comes from use cases, not interfaces

Database Overview

A database has a few key concepts and goals:

• Store Data

• Retrieve Data

• Relate Data

The Structure

Databases use different terminology

There are always (almost) the concept of a
table, columns, and a row

There are primary keys, foreign keys, indices,
and general constraints/triggers

These structures/features provide integrity

Columns

A Table consists of rows and columns

A column has a type, size, name, and possibly a
default value

Columns provide storage and no other rules
except potentially a default value

Rows

They are defined by the columns

Data is stored in a row

Columns provide structure and then data is
stored row by row

A Sample Design

Designing A DB

• Consider the Core Data Structures (Tables)

• Consider reference/lookup data

• Relationships among data

• 1 to 1, 1 to many, many to many (xref tables)

• Support tables and Reporting

Data Duplication and
Normalization

• Normalized data removes duplicate values

• Some normalization is recommended for all
non reporting tables

• Normalization increases scale and flexibility,
but reduces time to lookup and insert

Building Your Core

• Determine your main actors/groups of data

• This is often a User, Account info, Products,
Services, Customers, and similar data

• Look to your use cases for ideas and make
sure they are supported

Lookups and References

• Lookups are often simple structures for a list
of values (LOV)

• Examples include states, countries, status
values, customer types, etc.

• Sometimes more than an id and a value are
needed, consider sort order, active/inactive,
and short vs long names or labels

Relationships

• Look for use case relationships like “is a”,
“has a”, and “uses a”

• Normalizing data will create relationships

• Generally you want to avoid one to one tables
unless it also includes a one to zero
possibility (is a)

Relationships

• One To Many relationships are common and
include lookups as well as sets of data (phone
numbers, accounts, orders, etc.)

• Many To Many is typically used for multiple
views of data (groups of objects where an
object can be in multiple groups). This
requires a cross reference table.

Support/Report

• Structures can become complex so a simplified
copy can be very useful

• These are often denormalized for speed of
recovery

• There is an overhead cost of keeping data in sync
across multiple sources

• Use these sparingly or in another DB (warehouse)

Best Practices

• Avoid meaningful primary keys

• Name tables and columns in a human
readable way

• Keep sizes as small as possible/reasonable

• Avoid magic values

Best Practices

• Avoid columns that have more than one
meaning

• Include foreign keys when possible

• Avoid circular references

• Simplify/Normalize where it can save space,
but avoid forcing too many joins to retrieve
data

Bottom Line

• Start From Major Objects/Actors

• Add Details as needed (properties,
configuration, etc.)

• Review for relationships and normalization
that can simplify maintenance and reduce
size

• Follow Best Practices

Thanks!

Send any questions, comments, or requests for

assistance to info@develpreneur.com or

contact us on the site. We are available to help

you build your solution at any point in the

process.

mailto:info@develpreneur.com

