Creating a Software
Solution

An Object Oriented Approach



Our Story so Far

We Found A Problem To Solve
We Built Requirements and Use Cases
We Created A Clickable Demo
We Created a User Experience

We Designed a Database



Next Step

We are starting the implementation phase.




An Object Oriented Approach

e Most modern languages support some level

of object oriented design

e We will embrace this to ease maintenance

and provide for scalability

e This approach will make it easier to build out
the solution in sections or modules



GGetting Started

We have a few steps to get our design started

* Define our core data objects: This is done
just as we created the core tables in our DB

e In a similar vein create “buckets” for core

functionality

* Consider data that will always be required
(auth token, user id, etc.)



Our Example

e Goals Class - Goal related data and functions

e Users Class - Authentication and account




(Grouping Functions

Once you have the core data model, move to

the process and functions

This is a great time to review the use cases and

requirements

Look for steps that will be performed multiple
times and that are linked to core data



Common Methods

CRUD (Create, retrieve, update, delete) for

core data
Authentication/DB Connect
Aggregate/Transform data

Events/Rules/Process Flows



Non Core Methods

Organize data for views
Notifications/Messages/Email

Multi-Object Processes and Controllers

including relational rules

Exception handling/Errors and logging



Our Example

e Saving/Manipulating Data in the DB
(CRUD)

* Listing/Reporting Data
e Cascading updates/Side effects

* Security, Logging, and Notifications/Errors

e Data Validation



Legos, Not Sand

Functions/Methods should not be too large
(>100’s LOC)

Avoid side effects and try to keep to single
function other than transactions

The goal 1s clean interfaces and not just small
chunks of code

Stack multiple interfaces where applicable to
maintain a single primary function



Inheritance GGuidelines

Should be natural, do not force it just to

support inheritance, use in moderation

Consider global actions for a high level root
object

Parent objects should provide a single code
source and not be regularly over-written

Think about interfaces vs. hierarchy



Plugins and Shared Code

Pay attention to recurring code chunks. These are
good candidates for abstraction

Centralize process flows to ease sweeping changes

Keep configuration outside of code for easy
deployments

Limit assumptions for easier integration

Make steady use of comments and documentation



Modern Software

Avoid Reinventing the wheel, look for
prebuilt functions and methods

Batch and off loading processing may be best

Allow for multiple instances unless it would
somehow be prohibitive

Provide a hook or API to avoid coding
yourself into a corner



Best Practices

Avoid complex logic and magic numbers
Use meaningful names
Keep loops tight

Provide for exceptions and add in negative
testing

Validate user entered data



Bottom Line

Start From Major Objects/Actors

Add Details as needed (properties,
configuration, etc.)

Add basic functions: security, logging, error
handling, etc.

Follow Best Practices



Thanks!

Send any questions, comments, or requests for

assistance to info@develpreneur.com or

contact us on the site. We are available to help
you build your solution at any point in the

process.


mailto:info@develpreneur.com

