
Creating a Software
Solution

An Object Oriented Approach

Our Story so Far

• We Found A Problem To Solve

• We Built Requirements and Use Cases

• We Created A Clickable Demo

• We Created a User Experience

• We Designed a Database

Next Step

We are starting the implementation phase.
That means we need to consider our

approaching to code and its structure

An Object Oriented Approach

• Most modern languages support some level
of object oriented design

• We will embrace this to ease maintenance
and provide for scalability

• This approach will make it easier to build out
the solution in sections or modules

Getting Started

We have a few steps to get our design started

• Define our core data objects: This is done
just as we created the core tables in our DB

• In a similar vein create “buckets” for core
functionality

• Consider data that will always be required
(auth token, user id, etc.)

Our Example

• Goals Class - Goal related data and functions

• Users Class - Authentication and account
data

• Work Class - for handling work done on a
goal

Grouping Functions

Once you have the core data model, move to
the process and functions

This is a great time to review the use cases and
requirements

Look for steps that will be performed multiple
times and that are linked to core data

Common Methods

• CRUD (Create, retrieve, update, delete) for
core data

• Authentication/DB Connect

• Aggregate/Transform data

• Events/Rules/Process Flows

Non Core Methods

• Organize data for views

• Notifications/Messages/Email

• Multi-Object Processes and Controllers
including relational rules

• Exception handling/Errors and logging

Our Example

• Saving/Manipulating Data in the DB
(CRUD)

• Listing/Reporting Data

• Cascading updates/Side effects

• Security, Logging, and Notifications/Errors

• Data Validation

Legos, Not Sand
• Functions/Methods should not be too large
(>100’s LOC)

• Avoid side effects and try to keep to single
function other than transactions

• The goal is clean interfaces and not just small
chunks of code

• Stack multiple interfaces where applicable to
maintain a single primary function

Inheritance Guidelines
• Should be natural, do not force it just to

support inheritance, use in moderation

• Consider global actions for a high level root
object

• Parent objects should provide a single code
source and not be regularly over-written

• Think about interfaces vs. hierarchy

Plugins and Shared Code

• Pay attention to recurring code chunks. These are
good candidates for abstraction

• Centralize process flows to ease sweeping changes

• Keep configuration outside of code for easy
deployments

• Limit assumptions for easier integration

• Make steady use of comments and documentation

Modern Software

• Avoid Reinventing the wheel, look for
prebuilt functions and methods

• Batch and off loading processing may be best

• Allow for multiple instances unless it would
somehow be prohibitive

• Provide a hook or API to avoid coding
yourself into a corner

Best Practices

• Avoid complex logic and magic numbers

• Use meaningful names

• Keep loops tight

• Provide for exceptions and add in negative
testing

• Validate user entered data

Bottom Line

• Start From Major Objects/Actors

• Add Details as needed (properties,
configuration, etc.)

• Add basic functions: security, logging, error
handling, etc.

• Follow Best Practices

Thanks!

Send any questions, comments, or requests for

assistance to info@develpreneur.com or

contact us on the site. We are available to help

you build your solution at any point in the

process.

mailto:info@develpreneur.com

