
Creating a Software
Solution

An Overview of Software Patterns

Our Story so Far

• Found A Problem To Solve

• Built Requirements and Use Cases

• Created A Clickable Demo

• Created a User Experience

• Designed a Database

• General Objects Design

Next Step

We have started looking at the code structure.
Now we want to go deeper into patterns of

software design to speed our implementation

What Are Software Patterns?

• A Pattern is a best-practice or well-defined
approach to solving a problem

• New Designers can use patterns to quickly add a
number of solutions to their bag of tricks

• The Original Patterns book is called “Design
Patterns: Elements of Reusable Object-
Oriented Software” and often referred to as the
GOF (Gang Of Four) Patterns books

Common Patterns

• Strategy

• MVC (MVVM, etc.)

• Factory

• Iterator

• FlyWeight

• Adapter

• Builder

• Singleton

• Command

• Interpreter

Strategy Pattern

Strategy is a way to do something, for example a strategy to get
from a hotel to the airport (car, bus, walk, etc)

• Identify an algorithm that will be used
(travelToAirport)

• Specify the signature (number of travelers,
method, returns a time and cost)

• Bury the alternative implementation details in
derived classes (airportByCar, airportByFoot, etc)

• Clients couple themselves to the interface

MVC Pattern

A complex strategy for building a solution that stands for
Model-View-Controller

• Identify the data you will be working with (model)

• Identify the manipulations you will need to do to
the data

• Identify the signatures for the manipulations
(controller)

• Identify the ways to display the results and
gather input (view)

MVC Pattern

A complex strategy for building a solution that stands for Model-
View-Controller

• Identify the data you will be working with (model)

• Identify the manipulations you will need to do to
the data

• Identify the signatures for the manipulations
(controller)

• Identify the ways to display the results and
gather input (view)

Factory Pattern

A Factory provides a way to build a family of objects (Auto
Factory could build car, bus, truck, etc.)

• Map out the “platforms” and “products”

• Describe a factory interface that has a method
for each product

• Define a factory derived class that encapsulates
all new references

• Remove ability to call new and leave only the
factory as an option

Iterator Pattern

Common pattern for traversing a collection

• Provide an interface to create/retrieve
and iterator for the collection

• Design an iterator class that
encapsulates traversal

• Add common iterator methods (first,
last, next, is_done, cur_item, etc)

FlyWeight Pattern

For large systems that can reduce memory requirements

• Ensure object overhead needs attention and the client
class can handle the restructure

• Divide the target class into shareable and non-shareable
states

• Create a factory that can cache and reuse class instances

• The client or a third party must lookup or compute the
non shareable data

• Add ability to add the non shareable state and supply it
to the shareable methods

Adapter Pattern

Converts one interface to another. This is a software version of
physical adapters you have used

• Identify the players to be accommodated

• Identify the interface that is required

• Design a wrapper class to match the interface

• The wrapper has an instance of the adaptee

• The wrapper maps the client interface to the adaptee

• The client uses (coupled to) the new interface

Singleton Pattern

Insure a class has only one instance at a time and is globally
accessible

• Define a private static attribute in the singleton

• Define a public static accessor

• Do lazy initialization in the accessor

• Define all constructors to be protected or private

• Clients may only use the accessor

Builder Pattern

Rather than build an instance in one step a builder does it a step at a time

• Decide if a common input and many outputs is the problem

at hand

• Encapsulate the parsing of the input in a reader

• Define a builder for each of the steps

• Client creates a reader and a builder and registers the

builder with the reader

• Client asks the reader to construct

• Client asks the builder to return the result

Command Pattern

Encapsulate a request as an object to provide enhanced features like
logging, rollback, queue, etc

• Define a command interface with a method like execute()

• Create one or more subclasses to encapsulate a
receiver, method to invoke, and arguments

• Instantiate a command for each request

• Pass the command object from the sender to the receiver

• Receiver decides when to execute

Interpreter Pattern
Given a language, define a representation for its language

• Decide if a “little language” is worth the effort

• Define a grammar for the language

• Map each production in the grammar to a class

• Organize the classes into a composite

• Define an interpret(context) method in the
hierarchy

• The context encapsulates the current state as input
is parsed and output is accumulated

There Are More

• These are some common patterns, but many
more have been defined

• A search for “software design patterns” can
turn up several sites with varying details about
the patterns they cover

• Note that all of these are language agnostic so
you might focus on designs within a specific
language and how to implement them.

Thanks!

Send any questions, comments, or requests for

assistance to info@develpreneur.com or

contact us on the site. We are available to help

you build your solution at any point in the

process.

mailto:info@develpreneur.com

