
Anti-Pattern Patterns
Best Practices to Avoid The Worst

– Observations From The Anti-Pattern Season

When you start examining a large number of anti-patterns,
several patterns emerge.

Best Practices
• An Anti-Pattern Review

• Some Common Anti-Patterns

• Communication

• Design/Planning

• Cutting Corners

What is an Anti-Pattern?
An anti-pattern is a common response to a
recurring problem that is usually ineffective and
risks being highly counterproductive. The term,
coined in 1995 by Andrew Koenig,was inspired by
a book, Design Patterns, which highlights a
number of design patterns in software
development that its authors considered to be
highly reliable and effective.

https://en.wikipedia.org/wiki/Andrew_Koenig_(programmer)
https://en.wikipedia.org/wiki/Design_Patterns_(book)
https://en.wikipedia.org/wiki/Design_pattern
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software_development

Anti-Pattern Types
• Organizational - Bleeding Edge

• Project Management - Death March

• Software Design - Gold Plating

• OOP - God Object

• Programming - Spaghetti Code

• Methodological - Golden Hammer

• Configuration Management -
Dependency Hell

•

Common Anti-Patterns
• Analysis paralysis: A project stalled in the analysis phase, unable to achieve
support for any of the potential plans of approach

• Bicycle shed: Giving disproportionate weight to trivial issues
• Bleeding edge: Operating with cutting-edge technologies that are still
untested or unstable leading to cost overruns, under-performance or delayed
delivery

• Bystander apathy: The phenomenon in which people are less likely to or do
not offer help to a person in need when others are present

• Cash cow: A profitable legacy product that often leads to complacency about
new products

• Design by committee: The result of having many contributors to a design, but
no unifying vision

• Escalation of commitment: Failing to revoke a decision when it proves wrong

https://en.wikipedia.org/wiki/Analysis_paralysis
https://en.wikipedia.org/wiki/Parkinson%27s_law_of_triviality
https://en.wikipedia.org/wiki/Bleeding_edge
https://en.wikipedia.org/wiki/Bystander_apathy
https://en.wikipedia.org/wiki/Cash_cow
https://en.wikipedia.org/wiki/Design_by_committee
https://en.wikipedia.org/wiki/Escalation_of_commitment

Common Anti-Patterns
• Abstraction inversion: Not exposing implemented functionality required by
callers of a function/method/constructor, so that the calling code awkwardly re-
implements the same functionality in terms of those calls

• Ambiguous viewpoint: Presenting a model (usually Object-oriented analysis and
design (OOAD)) without specifying its viewpoint

• Big ball of mud: A system with no recognizable structure
• Database-as-IPC: Using a database as the message queue for
routine interprocess communication where a much more lightweight mechanism
would be suitable

• Gold plating: Continuing to work on a task or project well past the point at which
extra effort is not adding value

• Inner-platform effect: A system so customizable as to become a poor replica of
the software development platform

• Input kludge: Failing to specify and implement the handling of possibly invalid
input

https://en.wikipedia.org/wiki/Abstraction_inversion
https://en.wikipedia.org/wiki/Ambiguous_viewpoint
https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/Database-as-IPC
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Gold_plating_(analogy)
https://en.wikipedia.org/wiki/Inner-platform_effect
https://en.wikipedia.org/wiki/Input_kludge

Communication
• Cross Teams

• Vertical information and sharing

• Within the team

• Plans, Goals, Visions, and Progress

• Open Channels

Design/Planning
• Big Picture design/SDLC

• No need to rush to implementation

• Address changes as needed

• Small scale design and planning

• Review overall approach and design

Cutting Corners
• Documentation

• Quick Fixes

• Skipping SDLC steps in part or entirely

• Best practices like code reviews

• Deadline over quality

Final Thoughts
• A few steps can help us avoid most anti-patterns

• Not Rocket Science

• Learn from mistakes

• Follow best practices for a reason

• Questions? Comments?

What We Learned
• There are a lot of anti-patterns to learn from

• Standards and consistency are key

• Communicate

• Design

• Follow Through

Thank You!
I appreciate your time and would love to discuss any

of this further. You can send questions, comments
and suggestions through any of these methods.

• info@develpreneur.com

• https://develpreneur.com/contact-us

• @develpreneur

• https://www.facebook.com/Develpreneur

Our goal is making every developer better.

mailto:info@develpreneur.com
https://develpreneur.com/contact-us

